Systematic Approach to In-Depth Understanding of Photoelectrocatalytic Bacterial Inactivation Mechanisms by Tracking the Decomposed Building Blocks

2014 ◽  
Vol 48 (16) ◽  
pp. 9412-9419 ◽  
Author(s):  
Hongwei Sun ◽  
Guiying Li ◽  
Xin Nie ◽  
Huixian Shi ◽  
Po-Keung Wong ◽  
...  
Author(s):  
Johnny Tiu ◽  
Richard Bachoo

The wave vibration approach regards the vibrations present within a structure as waves, whereby each wave flows along a structural member and upon meeting a discontinuity; portions of the incident wave are reflected and transmitted across the discontinuity. The reflected, transmitted and propagating wave transformations are represented mathematically by matrices, which are used to develop a set of wave relation equations at each discontinuity that can be used to describe the frequency response of the system holistically. This method creates a systematic approach of analysing structures by utilizing common cases as building blocks for a specific structure. The L-joint, described as two beams meeting at right angles; is a ubiquitous case for spatial portal and structural frames, which may become geometrically complex. Such structures are well suited to a wave vibration approach due to the large number of geometric changes and the prevalence as well as recurrence of specific cases. In this paper, the L-joint expanded to include a blocking mass, typically employed in structural systems and allows for the isolation and reflection of vibration away from contiguous structural elements. Included are; variance of transmission and reflection matrix components as the size of the blocking mass increases, numerical examples and comparison to a Finite Element Model developed in ANSYS.


Author(s):  
Andreas U. Schmidt ◽  
Nicolai Kuntze

Security in the value creation chain hinges on many single components and their interrelations. Trusted Platforms open ways to fulfil the pertinent requirements. This chapter gives a systematic approach to the utilisation of trusted computing platforms over the whole lifecycle of multimedia products. This spans production, aggregation, (re)distribution, consumption, and charging. Trusted Computing technology as specified by the Trusted Computing Group provides modular building blocks which can be utilized at many points in the multimedia lifecycle. We propose an according research roadmap beyond the conventional Digital Rights Management use case. Selected technical concepts illustrate the principles of Trusted Computing applications in the multimedia context.


2002 ◽  
Vol 12 (12) ◽  
pp. 2907-2915 ◽  
Author(s):  
GUO-QUN ZHONG ◽  
KIM-FUNG MAN ◽  
GUANRONG CHEN

A new circuitry design based on Chua's circuit for generating n-scroll attractors (n = 1, 2, 3, …) is proposed. In this design, the nonlinear resistor in Chua's circuit is constructed via a systematical procedure using basic building blocks. With the proposed construction scheme, the slopes and break points of the v–i characteristic of the circuit can be tuned independently, and chaotic attractors with an even or an odd number of scrolls can be easily generated. Distinct attractors with n-scrolls (n = 5, 6, 7, 8, 9, 10) obtained with this simple experimental set-up are demonstrated.


2021 ◽  
Author(s):  
Nafiul Hyder

This work investigates the minimum layout area of multiplexers, a fundamental building block of Field-Programmable Gate Arrays (FPGAs). In particular, we investigate the minimum layout area of 4:1 multiplexers, which are the building blocks of 2-input Look-Up Tables (LUTs) and can be recursively used to build higher order LUTs and multiplexer-based routing switches. We observe that previous work routes all four data inputs of 4:1 multiplexers on a single metal layer resulting in a wiring-area-dominated layout. In this work, we explore the various transistor-level placement options for implementing the 4:1 multiplexers while routing multiplexer data inputs through multiple metal layers in order to reduce wiring area. Feasible placement options with their corresponding data input distributions are then routed using an automated maze router and the routing results are then further manually refined. Through this systematic approach, we identified three 4:1 multiplexer layouts that are smaller than the previously proposed layouts by 30% to 35%. In particular, two larger layouts of the three are only 33% to 45% larger than layout area predicted by the two widely used active area models from previous FPGA architectural studies, and the smallest of the three layouts is 1% to 11% larger than the layout area predicted by these models.


2021 ◽  
Author(s):  
Nafiul Hyder

This work investigates the minimum layout area of multiplexers, a fundamental building block of Field-Programmable Gate Arrays (FPGAs). In particular, we investigate the minimum layout area of 4:1 multiplexers, which are the building blocks of 2-input Look-Up Tables (LUTs) and can be recursively used to build higher order LUTs and multiplexer-based routing switches. We observe that previous work routes all four data inputs of 4:1 multiplexers on a single metal layer resulting in a wiring-area-dominated layout. In this work, we explore the various transistor-level placement options for implementing the 4:1 multiplexers while routing multiplexer data inputs through multiple metal layers in order to reduce wiring area. Feasible placement options with their corresponding data input distributions are then routed using an automated maze router and the routing results are then further manually refined. Through this systematic approach, we identified three 4:1 multiplexer layouts that are smaller than the previously proposed layouts by 30% to 35%. In particular, two larger layouts of the three are only 33% to 45% larger than layout area predicted by the two widely used active area models from previous FPGA architectural studies, and the smallest of the three layouts is 1% to 11% larger than the layout area predicted by these models.


2015 ◽  
Vol 51 (56) ◽  
pp. 11174-11177 ◽  
Author(s):  
Daniel J. Foley ◽  
Richard G. Doveston ◽  
Ian Churcher ◽  
Adam Nelson ◽  
Stephen P. Marsden

A strategy for the efficient lead-oriented synthesis of novel molecular scaffolds is demonstrated. Twenty two scaffolds were prepared from four quaternary α-amino acid building blocks in only 49 synthetic operations, using six connective reactions. The ability of each scaffold to specifically target leadlike chemical space was demonstrated computationally.


Author(s):  
Lucy Liu ◽  
Gary P. T. Choi ◽  
L. Mahadevan

Kirigami, the art of paper cutting, has become a paradigm for mechanical metamaterials in recent years. The basic building blocks of any kirigami structures are repetitive deployable patterns that derive inspiration from geometric art forms and simple planar tilings. Here, we complement these approaches by directly linking kirigami patterns to the symmetry associated with the set of 17 repeating patterns that fully characterize the space of periodic tilings of the plane. We start by showing how to construct deployable kirigami patterns using any of the wallpaper groups, and then design symmetry-preserving cut patterns to achieve arbitrary size changes via deployment. We further prove that different symmetry changes can be achieved by controlling the shape and connectivity of the tiles and connect these results to the underlying kirigami-based lattice structures. All together, our work provides a systematic approach for creating a broad range of kirigami-based deployable structures with any prescribed size and symmetry properties.


1997 ◽  
Vol 161 ◽  
pp. 23-47 ◽  
Author(s):  
Louis J. Allamandola ◽  
Max P. Bernstein ◽  
Scott A. Sandford

AbstractInfrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the building blocks of comets. Since comets are thought to be a major source of the volatiles on the primative earth, their organic inventory is of central importance to questions concerning the origin of life. Ices in molecular clouds contain the very simple molecules H2O, CH3OH, CO, CO2, CH4, H2, and probably some NH3and H2CO, as well as more complex species including nitriles, ketones, and esters. The evidence for these, as well as carbonrich materials such as polycyclic aromatic hydrocarbons (PAHs), microdiamonds, and amorphous carbon is briefly reviewed. This is followed by a detailed summary of interstellar/precometary ice photochemical evolution based on laboratory studies of realistic polar ice analogs. Ultraviolet photolysis of these ices produces H2, H2CO, CO2, CO, CH4, HCO, and the moderately complex organic molecules: CH3CH2OH (ethanol), HC(= O)NH2(formamide), CH3C(= O)NH2(acetamide), R-CN (nitriles), and hexamethylenetetramine (HMT, C6H12N4), as well as more complex species including polyoxymethylene and related species (POMs), amides, and ketones. The ready formation of these organic species from simple starting mixtures, the ice chemistry that ensues when these ices are mildly warmed, plus the observation that the more complex refractory photoproducts show lipid-like behavior and readily self organize into droplets upon exposure to liquid water suggest that comets may have played an important role in the origin of life.


Author(s):  
D.E. Brownlee ◽  
A.L. Albee

Comets are primitive, kilometer-sized bodies that formed in the outer regions of the solar system. Composed of ice and dust, comets are generally believed to be relic building blocks of the outer solar system that have been preserved at cryogenic temperatures since the formation of the Sun and planets. The analysis of cometary material is particularly important because the properties of cometary material provide direct information on the processes and environments that formed and influenced solid matter both in the early solar system and in the interstellar environments that preceded it.The first direct analyses of proven comet dust were made during the Soviet and European spacecraft encounters with Comet Halley in 1986. These missions carried time-of-flight mass spectrometers that measured mass spectra of individual micron and smaller particles. The Halley measurements were semi-quantitative but they showed that comet dust is a complex fine-grained mixture of silicates and organic material. A full understanding of comet dust will require detailed morphological, mineralogical, elemental and isotopic analysis at the finest possible scale. Electron microscopy and related microbeam techniques will play key roles in the analysis. The present and future of electron microscopy of comet samples involves laboratory study of micrometeorites collected in the stratosphere, in-situ SEM analysis of particles collected at a comet and laboratory study of samples collected from a comet and returned to the Earth for detailed study.


Sign in / Sign up

Export Citation Format

Share Document