Power Electronic Building Blocks-a systematic approach to power electronics

Author(s):  
T. Ericsen
Author(s):  
H L Ginn III ◽  
J D Bakos ◽  
Fred Flinstone ◽  
A Benigni

A long-term goal of future naval shipboard power systems is the ability to manage energy flow with sufficient flexibility to accommodate future platform requirements such as, better survivability, continuity, and support of pulsed and other demanding loads. To attain this vision of   shipboard energy management, shipboard power and energy management systems must coordinate operation of all major components in real-time. The primary components of a shipboard power system are the generators, energy storage modules, and increasingly power electronics that interface those sources and main load centers to the system. Flexible management of energy flow throughout shipboard distribution systems can be realized by automated coordination of multiple power electronic converters along with storage and generation systems. Use of power converters in power distribution systems has continuously increased due to continued development of the power electronics building blocks (PEBB) concept which reduces cost and increasing reliability of converters. Recent developments in SiC power devices are yielding PEBBs with far greater switching frequencies than Si based devices resulting in an order of magnitude reduction of the time scales as compared to converter systems utilizing conventional IGBT based PEBBs. In addition there have also been advancements in highly modularized converter systems with hundreds of PEBBs such as the Modular Multilevel Converter. Both of those trends have resulted in the continued evolution of the Universal Controller Architecture which attempts to standardize control interfaces for modular power electronic systems.  Further development of interface definitions and increasing communication and computational capabilities of new FPGA based controllers provides opportunities beyond simply supporting SiC PEBBs. Fast control coordination across the system using an appropriate communication architecture provides a degree of energy management not previously realizable in shipboard power systems. The paper will present recent research results in networked control architectures for power electronic converter coordination and control. It will demonstrate that current FPGA and gigabit speed serial communication technologies allow for a very high degree of energy flow control.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4176 ◽  
Author(s):  
Chaoqun Jiao ◽  
Juan Zhang ◽  
Zhibin Zhao ◽  
Zuoming Zhang ◽  
Yuanliang Fan

With the development of China’s electric power, power electronics devices such as insulated-gate bipolar transistors (IGBTs) have been widely used in the field of high voltages and large currents. However, the currents in these power electronic devices are transient. For example, the uneven currents and internal chip currents overshoot, which may occur when turning on and off, and could have a great impact on the device. In order to study the reliability of these power electronics devices, this paper proposes a miniature printed circuit board (PCB) Rogowski coil that measures the current of these power electronics devices without changing their internal structures, which provides a reference for the subsequent reliability of their designs.


Author(s):  
Johnny Tiu ◽  
Richard Bachoo

The wave vibration approach regards the vibrations present within a structure as waves, whereby each wave flows along a structural member and upon meeting a discontinuity; portions of the incident wave are reflected and transmitted across the discontinuity. The reflected, transmitted and propagating wave transformations are represented mathematically by matrices, which are used to develop a set of wave relation equations at each discontinuity that can be used to describe the frequency response of the system holistically. This method creates a systematic approach of analysing structures by utilizing common cases as building blocks for a specific structure. The L-joint, described as two beams meeting at right angles; is a ubiquitous case for spatial portal and structural frames, which may become geometrically complex. Such structures are well suited to a wave vibration approach due to the large number of geometric changes and the prevalence as well as recurrence of specific cases. In this paper, the L-joint expanded to include a blocking mass, typically employed in structural systems and allows for the isolation and reflection of vibration away from contiguous structural elements. Included are; variance of transmission and reflection matrix components as the size of the blocking mass increases, numerical examples and comparison to a Finite Element Model developed in ANSYS.


2021 ◽  
Vol 1 (2) ◽  
pp. 6-14
Author(s):  
Peter Zacharias ◽  

Magnetic components are characterized by high robustness and reliability. Controllable magnetic components, which used to dominate, have been out of fashion for about 50 years. However, they have great advantages in terms of longevity, radiation resistance and overload capacity and become smaller and smaller with increasing operating frequency. This makes them interesting in modern power electronics applications with the increasing use of WGB semiconductors. The article shows how the performance of power electronic converters can be improved with modern power electronics and with field-controlled magnetic components using modern magnetic materials. Keywords: Magnetic components; Passive components; Modelling; Magnetic amplifiers; Controllable filters;


Author(s):  
He Song ◽  
Jun Wang ◽  
Yue Xu ◽  
Joshua Stewart ◽  
Slavko Mocevic ◽  
...  

2016 ◽  
Vol 2016 (CICMT) ◽  
pp. 000032-000038
Author(s):  
Atanu Dutta ◽  
Simon S. Ang

Abstract Efficient, compact, and reliable power electronic modules are building blocks of modern day power electronic systems. In recent times, wide bandgap semiconductor devices, such as, silicon carbide (SiC) and gallium nitride (GaN), are widely investigated and used in the power electronic modules to realize power dense, highly efficient, and fast switching modules for various applications. For high power applications is it required to parallel and series several devices to achieve high current and high voltage specifications, which results in larger current conducting traces. One of the major obstacles in using these wideband gap power semiconductor devices are the internal module stray inductance that is associated with these current conducting traces. With increasing demand for higher switching frequency, the internal module parasitic inductance must be reduced to as minimum as possible in order to utilize the full potential of the wide bandgap devices. A multi-layer approach of low-temperature co-fired ceramic (LTCC) to package the wide bandgap devices is investigated. The multi-layer design freedom by using LTCC can be utilized to reduce the footprint of the overall power module, electrical interconnects, hence, reducing the package parasitic inductance. LTCC also facilitates high temperature operations and has a coefficient of thermal expansion matching with wide bandgap devices. In this paper, we report on a LTCC based power module design where LTCC is utilized as an isolation layer between the source and the drain of the power devices. A simulation based parasitic inductance analysis and electro-thermal-mechanical study is performed using ANSYS Workbench Tools to investigate the feasibility of this LTCC based design.


Sign in / Sign up

Export Citation Format

Share Document