Charcoal-adsorption air purification system for chamber studies investigating atmospheric photochemistry

1977 ◽  
Vol 11 (1) ◽  
pp. 45-51 ◽  
Author(s):  
George J. Doyle ◽  
Paul J. Bekowies ◽  
Arthur M. Winer ◽  
James N. Pitts
2009 ◽  
Author(s):  
Chang-Yu Wu ◽  
Brian Damit ◽  
Qi Zhang ◽  
Myung-Heui Woo ◽  
Wolfgang Sigmund ◽  
...  

2020 ◽  
Vol 12 (13) ◽  
pp. 5428
Author(s):  
Aya Elkamhawy ◽  
Choon-Man Jang

This paper describes designing, manufacturing, and evaluating an eco-friendly modular-type air purification system to enhance the removal efficiency of fine particulate matter (PM) in urban public spaces, especially in hotspots. This system consists of artificial soil based-vegetation and electrostatic precipitator (ESP) filters. Unlike the so-called passive removal method, which adsorbs fine PM only by the leaves of plants, the vegetation soil filter based on multi-layered different artificial soils adopts an active removal method in which air purification is performed in the soil itself, bypassing external air by using the air circulation fan in the soil. The ESP filter is designed and evaluated to have a high fine PM removal efficiency, even at high suction velocity, to remove large amounts of outdoor fine PM. Throughout the experimental measurements on the hybrid air purification system with vegetation soil and ESP filters, it is observed that the vegetation soil filter has a 78.5% reduction efficiency for PM2.5 and a 47% for PM10 at the inlet air velocity of 0.15 m/s. The ESP filter also has a 73.1% reduction efficiency for PM2.5 and 87.3% for PM10 at an inlet air velocity of 3 m/s. Based on the performance evaluations of the vegetation soil filter and the ESP filter, it is noted that each individual module will be applied to an air purification tower with vertical expansion and installed in a high concentration area of fine PM in a downtown area to contribute to the fine PM reduction in the community.


2001 ◽  
Vol 2001.11 (0) ◽  
pp. 65-67
Author(s):  
Koji KITABAYASHI ◽  
Akira KAWASAKI ◽  
Shigeki KONDO ◽  
Atsushi KATATANI ◽  
Hideo OHASHI

Author(s):  
E.I. Starovoitov, Et. al.

The present work is devoted to the study of the processes of heat and mass transfer in the adsorbers of the preliminary drying unit of the atmosphere purification system. A mathematical model has been developed that adequately reflects the physical processes at all stages of the adsorption cycle.Algorithms for solving problems and programs for calculating heat and mass transfer processes in an adsorption regenerated installation are obtained, results of parametric calculations of heat and mass transfer processes at each stage of the adsorption cycle and for the entire cycle as a whole are obtained.


Author(s):  
Ye-lim Kang ◽  
◽  
Tae-ho Cho ◽  

Fine dust refers to harmful substances floating in the air. It is divided into PM 2.5 and PM 10, and has the characteristic that the particles are small enough to be invisible to the naked eye. When fine dust enters a room, it can enter the human body through the bronchi and cause lung or respiratory diseases. To solve the health problems caused by fine dust, research and development about various air purification systems are progressing. In this paper, we introduce a Wireless Sensor Networks (WSNs)-based Internet of Things (IoT) air purification system. This WSNs-based IoT air purification system refers to a system in which an IoT air purifier and a window are automatically controlled based on fine dust values detected by sensor nodes. Therefore, because it is important to maintain the integrity of the fine dust values, SSL/TLS, an encryption protocol, is applied to this system. However, the existing SSL/TLS has a problem in which, if an attacker attempts a false data injection attack, the symmetric key itself used to encrypt and decrypt the data is stolen, so it cannot be detected. To solve this problem, in this paper we propose a Discrete Event System Specification (DEVS) model based on Data Calibration that verifies whether the fine dust values detected by sensor nodes and an IoT air purifier is within a preset error range. If the fine dust value is not within the preset error range, it is detected as false data, filtered, and not stored in the database. Because this proposed scheme verifies the integrity of the fine dust values, it not only raises the accuracy of collected sensing data, but also prevents abnormal operation of an IoT air purifier and a window in advance. Therefore, the security of the WSNs-based IoT air purification system is improved.


Sign in / Sign up

Export Citation Format

Share Document