A study on parents’ perception for school classroom air quality, indoor and outdoor particulate matter, and air purification system

2020 ◽  
Vol 19 (4) ◽  
pp. 362-368
Author(s):  
Sanghyun Yoo ◽  
◽  
Keum-Young Seo ◽  
Myung Joon Oh ◽  
Keunho Song ◽  
...  
Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1606
Author(s):  
Małgorzata Basińska ◽  
Michał Michałkiewicz ◽  
Katarzyna Ratajczak

Dissatisfaction with indoor air quality is common even in relatively new or renovated Polish school buildings. To improve air quality in educational buildings, portable devices have seen increased use, for which manufacturers guarantee a high level of indoor air purification. However, their optimized operation largely depends on their correct use. The aim of this article was to determine the effectiveness of air purification in a primary school using an air purification device with an analysis of the classroom indoor air quality (IAQ). Two criteria were used, microbiological and particulate matter concentration. Measurements were made before device installation and during its continuous operation, and before and after lessons on chosen days. Measurements related to IAQ did not detect clear differences in the analyzed measurement periods. For microbiological contamination, in the morning before lessons, the total count for all bacteria and microscopic fungi was definitely lower than after lessons. Comparing the periods before and after device installation, no clear tendency for reducing the bacteria count or microscopic fungi occurred during air purifier operation, nor was there any noticeable trend in the reduction of particulate matter. There was no improvement in air quality in the classrooms during the operation of the purification devices.


2020 ◽  
Vol 10 (28) ◽  
Author(s):  
Musibau O. Jelili ◽  
Adeniyi S. Gbadegesin ◽  
Abimbola T. Alabi

Background Airborne particulates are an issue in many urban regions around the world and their detrimental impact on human health has increasingly become a public health concern. Objectives The aim of the present study was to examine particle pollution in an urban settlement in Nigeria. This study examines the extent, spatial variation, and sources of indoor and outdoor particulate matter (PM) concentrations in Ogbomoso, Nigeria. Methods The survey research method was adopted. Sampling included 385 buildings across selected precincts and different residential zones in the town of Ogbomoso. Particulate matter analytes (PM1, PM2.5 and PM10) within/around each building were measured with a particle counter and details on domestic utilities/practices were obtained with a questionnaire. Analysis of variance was used to determine inter-zonal variations in PM levels and simple linear regression was used to analyze the relationship between indoor and outdoor air quality. Results Indoor and outdoor respirable particle (PM2.5) concentrations were lower than the World Health Organization (WHO) Interim Target limit of 75 μg/m3, while concentrations of inhalable particles (PM10) were higher than the set limit of 150 μg/m3 for daily averages. Coarse particles dominated, with an accumulative PM2.5/PM10 ratio of 0.24. The inter-zonal analysis of PM concentrations revealed that indoor and outdoor PM levels varied significantly by residential zone (p = 0.0005; p = 0.01, respectively). Regression analysis showed a significant but weak relationship between indoor and outdoor PM levels (r = +0.221), while the coefficient of determination (R2 = 0.049) showed that only about 5% of the variation in indoor air quality was associated with outdoor air quality. Particle pollution inducers were identified in the residents' waste disposal methods and adopted fuels/energy sources, with firewood and charcoal linked with increased concentrations of particulate matter. Conclusions Air quality was relatively poor in the study area given observed particulate matter concentrations. Cleaner fuels, effective waste management systems and improved roads are needed to foster better air quality in the study area. Competing Interests The authors declare no competing financial interests


2015 ◽  
Vol 17 (2) ◽  
pp. 316-325 ◽  
Author(s):  
Paul T. J. Scheepers ◽  
Jeroen J. de Hartog ◽  
Judith Reijnaerts ◽  
Gwendolyn Beckmann ◽  
Rob Anzion ◽  
...  

In situ testing in a primary school classroom showed that combining air filtration with a carpet reduced particulate matter concentrations.


2019 ◽  
Vol 11 (24) ◽  
pp. 7220 ◽  
Author(s):  
Sergio Trilles ◽  
Ana Belen Vicente ◽  
Pablo Juan ◽  
Francisco Ramos ◽  
Sergi Meseguer ◽  
...  

A suitable and quick determination of air quality allows the population to be alerted with respect to high concentrations of pollutants. Recent advances in computer science have led to the development of a high number of low-cost sensors, improving the spatial and temporal resolution of air quality data while increasing the effectiveness of risk assessment. The main objective of this work is to perform a validation of a particulate matter (PM) sensor (HM-3301) in indoor and outdoor environments to study PM2.5 and PM10 concentrations. To date, this sensor has not been evaluated in real-world situations, and its data quality has not been documented. Here, the HM-3301 sensor is integrated into an Internet of things (IoT) platform to establish a permanent Internet connection. The validation is carried out using a reference sampler (LVS3 of Derenda) according to EN12341:2014. It is focused on statistical insight, and environmental conditions are not considered in this study. The ordinary Linear Model, the Generalized Linear Model, Locally Estimated Scatterplot Smoothing, and the Generalized Additive Model have been proposed to compare and contrast the outcomes. The low-cost sensor is highly correlated with the reference measure ( R 2 greater than 0.70), especially for PM2.5, with a very high accuracy value. In addition, there is a positive relationship between the two measurements, which can be appropriately fitted through the Locally Estimated Scatterplot Smoothing model.


Buildings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 25
Author(s):  
Amy Kim ◽  
Lysandra Medal ◽  
Shuoqi Wang ◽  
Timothy Larson

The air quality inside airport terminal buildings is a lesser studied area compared to ambient air quality at the airport. The contribution of outdoor particulate matter (PM), aircraft traffic, and passenger traffic to indoor PM concentration is not well understood. Using the largest airport in Southeast Asia as the study site (extends 17.9 square kilometers), the objective of this paper is to conduct a preliminary analysis to examine the mass concentrations of fine particles, including PM1 and PM2.5, and coarse particles PM2.5–10 inside a four-story terminal building spanning 400,000 square meters in Jakarta, Indonesia. The results showed the indoor/outdoor (I/O) ratio of 0.42 for PM1 with 15-min time lag and 0.33 for PM2.5 with 30-min time lag. The aircraft traffic appeared to have a significant impact on indoor PM1 and PM2.5, whereas the passenger traffic showed an influence on indoor PM2.5–10.


Exposure to outdoor and indoor air particles (also known as particulate matter or PM) has attracted the interest of the scientific researchers around the world, this is because of the adverse health effects that particles have on the human. Smaller fractions of particulate matter (repairable range, ≤10 µm) give the greatest health problem, because they have the ability to reach deeper parts of the human respiratory system. Many countries have paid attention to the air pollution and made regulations to improve their indoor and outdoor air quality, Saudi Arabia, particularly Qassim region, has not given much attention to the problem of air contaminants in the ambient and indoor environments. In addition, ambient environmental parameters will be recorded. The results obtained from the indoor and outdoor measurements will help us to evaluate the air quality in Buraydah city for different seasons in the indoor and outdoor environments.


2021 ◽  
Author(s):  
Ranjeet S. Sokhi ◽  
Nicolas Moussiopoulos ◽  
Alexander Baklanov ◽  
John Bartzis ◽  
Isabelle Coll ◽  
...  

Abstract. This review provides a community’s perspective on air quality research focussing mainly on developments over the past decade. The article provides perspectives on current and future challenges as well as research needs for selected key topics. While this paper is not an exhaustive review of all research areas in the field of air quality, we have selected key topics that we feel are important from air quality research and policy perspectives. After providing a short historical overview, this review focuses on improvements in characterising sources and emissions of air pollution, new air quality observations and instrumentation, advances in air quality prediction and forecasting, understanding interactions of air quality with meteorology and climate, exposure and health assessment, and air quality management and policy. In conducting the review, specific objectives were (i) to address current developments that push the boundaries of air quality research forward, (ii) to highlight the emerging prominent gaps of knowledge in air quality research and (iii) and to make recommendations to guide the direction for future research within the wider community. This review also identifies areas of particular importance for air quality policy. The original concept of this review was borne at the International Conference on Air Quality 2020 (held online due to the COVID 19 restrictions during 18–26 May 2020), but the article incorporates a wider landscape of research literature within the field of air quality science. On air pollution emissions the review highlights, in particular, the need to reduce uncertainties in emissions from diffuse sources, particulate matter chemical components, shipping emissions and the importance of considering both indoor and outdoor sources. There is a growing need to have integrated air pollution and related observations from both ground based and remote sensing instruments, including especially those on satellites. The research should also capitalize on the growing area of lower cost sensors, while ensuring a quality of the measurements which are regulated by guidelines. Connecting various physical scales in air quality modelling is still a continual issue, with cities being affected by air pollution gradients at local scales and by long range transport. At the same time, one should allow for the impacts from climate change on a longer timescale. Earth system modelling offers considerable potential by providing a consistent framework for treating scales and processes, especially where there are significant feedbacks, such as those related to aerosols, chemistry and meteorology. Assessment of exposure to air pollution should consider both the impacts of indoor and outdoor emissions, as well as apply more sophisticated, dynamic modelling approaches. With particulate matter being one of the most important pollutants for health, research is indicating the urgent need to understand, in particular, the role of particle number and chemical components in terms of health impact, which in turn requires improved emission inventories and models for predicting high resolution distributions of these metrics over cities. The review also examines, how air pollution management needs to adapt to the above-mentioned new challenges and briefly considers the implications from the COVID-19 pandemic for air quality. Finally, we provide recommendations for air quality research and support for policy.


2012 ◽  
Vol 178-181 ◽  
pp. 711-717
Author(s):  
Shi Bin Geng ◽  
Ming Xing Xiao

This article use several different physical models to describe coupling relationship between indoor and outdoor air contaminants ,analysis the principle of the air filter air purification, discuss all the filters’ roles in improving IAQ.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 55
Author(s):  
Jae Jung Lee ◽  
Hyemin Hwang ◽  
Suk Chan Hong ◽  
Jae Young Lee

The indoor air quality in public transport systems is a major concern in South Korea. Within this context, we investigated the effect of air purification systems on the indoor air quality of intercity buses, one of the most popular transport options in South Korea. Air purifiers were custom designed and equipped with high-efficiency particulate air (HEPA) filters to remove particulate matter and ultraviolet light-emitting diodes (UV-LEDs) to remove airborne bacteria. To investigate the effectiveness of the air purification systems, we compared concentrations of particulate matter (PM2.5 and PM10), airborne bacteria, and carbon dioxide (CO2) in six buses (three with air purification systems and three without) along three bus routes (BUS1, BUS2, BUS3) in Gyeonggi Province, South Korea, between 6 April and 4 May 2021. Compared to the buses without air purification, those with air purification systems showed 34–60% and 25–61% lower average concentrations of PM2.5 and PM10, respectively. In addition, buses with air purification systems had 24–78% lower average airborne bacteria concentrations compared to those without air purification systems (when measured after 30 min of initial purification).


Sign in / Sign up

Export Citation Format

Share Document