Investigation of Surface Properties of Soil Particles and Model Materials with Contrasting Hydrophobicity Using Atomic Force Microscopy

2009 ◽  
Vol 43 (17) ◽  
pp. 6500-6506 ◽  
Author(s):  
Shuying Cheng ◽  
Robert Bryant ◽  
Stefan H. Doerr ◽  
Christopher J. Wright ◽  
P. Rhodri Williams
RSC Advances ◽  
2016 ◽  
Vol 6 (31) ◽  
pp. 25789-25798 ◽  
Author(s):  
Sumit Arora ◽  
Michael Kappl ◽  
Mehra Haghi ◽  
Paul M. Young ◽  
Daniela Traini ◽  
...  

l-Leucine modified voriconazole spray dried micropartcles.


2006 ◽  
Vol 514-516 ◽  
pp. 1598-1602 ◽  
Author(s):  
Sergio Graça ◽  
Rogerio Colaço ◽  
Rui Vilar

When atomic force microscopy is used to retrieve nanomechanical surface properties of materials, unsuspected measurement and instrumentation errors may occur. In this work, some error sources are investigated and operating and correction procedures are proposed in order to maximize the accuracy of the measurements. Experiments were performed on sapphire, Ni, Co and Ni-30%Co samples. A triangular pyramidal diamond tip was used to perform indentation and scratch tests, as well as for surface visualization. It was found that nonlinearities of the z-piezo scanner, in particular the creep of the z-piezo, and errors in the determination of the real dimensions of tested areas, are critical parameters to be considered. However, it was observed that there is a critical load application rate, above which the influence of the creep of the z-piezo can be neglected. Also, it was observed that deconvolution of the tip geometry from the image of the tested area is essential to obtain accurate values of the dimensions of indentations and scratches. The application of these procedures enables minimizing the errors in nanomechanical property measurements using atomic force microscopy techniques.


2010 ◽  
Vol 4 (4) ◽  
pp. 259-263 ◽  
Author(s):  
Snezana Nenadovic ◽  
Milos Nenadovic ◽  
Ljiljana Kljajevic ◽  
Vladimir Pavlovic ◽  
Aleksandar Djordjevic ◽  
...  

This paper presents a study of soils structure and composition using up to date technique, such as scanning electronic microscopy, atomic force microscopy, X-ray diffraction, X-ray fluorescence, as well as some other characterization methods. It was shown that soil particles have porous structure and dimensions in the range from several millimeters to several hundreds of nanometers and consist of different minerals such as kaolin, quartz and feldspate.


Sign in / Sign up

Export Citation Format

Share Document