Determination of the optimum gas velocity for dilute-phase transport of coarse particles in large vertical tubes

1986 ◽  
Vol 25 (2) ◽  
pp. 590-593
Author(s):  
Jiyu Zhang
Minerals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 344
Author(s):  
Svetlana Bortnikova ◽  
Natalya Abrosimova ◽  
Nataliya Yurkevich ◽  
Valentina Zvereva ◽  
Anna Devyatova ◽  
...  

This paper demonstrates the results of experiments for the determination of the composition of gases during the dehydration of sulfates (Na-jarosite, melanterite, and chalcanthite) collected at the surface of pyrometallurgical waste heaps. The volatilization of various elements, and vapor–gas phase transport from three sulfate groups were investigated by stepwise laboratory heating at 45, 55, and 65 °C. The sample of yellow efflorescence mainly consisted of Na-jarosite, the white efflorescence contained melanterite as the major mineral, and the blue efflorescence sample consisted of chalcanthite. These all contained a few impurities up to 5 %. The highest total dissolved solids (TDS) was found in the gas condensates from melanterite (59 mg/L), followed by chalcanthite (29 mg/L) and Na-jarosite (17 mg/L). It was determined that major and trace elements in the condensate can be trapped by water vapor and can migrate with the vapor phase during the desorption and dehydration of hydrous sulfates. X-ray diffractograms showed that Na-jarosite remained stable throughout the temperature range, whilst the separation of melanterite’s structural water occurred at 40 °C, and chalcanthite completely lost two water molecules at 50 °C. The gas condensates contained acetates and formates, which could be the fermentation products of bacterial communities. Some of the strains—Micrococcaceae sp., Bacillus sp., and Microbacteriaceae sp.—were cultivated.


Author(s):  
S. Dhanasekaran ◽  
T. Karunanithi

This investigation reports the experimental and theoretical results carried out to evaluate the volumetric mass transfer coefficient (kLa) in a novel hybrid rotating and reciprocating perforated plate bubble column. Countercurrent condition is performed. kLa is studied by the absorption of oxygen from air into deoxygenated water at room temperature (27 ± 1°C). Effects of agitation level, superficial gas velocity, superficial liquid velocity and plate spacing on kLa were analyzed and found to be significant. With an increase in agitation level at a constant superficial gas and liquid velocities, the breakage process of gas bubbles starts to be more pronounced and intensive oxygen mass transfer occurs. Hence, kLa increases sharply. kLa increases with an increase in superficial gas velocity, due to higher gas holdup and the enhanced breakup of bubbles. Similarly, kLa increases with an increase in superficial liquid velocity and the effect is found to be significant. When plate spacing is decreased (by increasing the number of plates), it is observed that the kLa increases at higher superficial gas velocity and agitation level. Correlation is developed for the determination of kLa and found to concur with experimental results. This correlation can be used for the determination of kLa for this hybrid column with 95% accuracy within the range of variables investigated in this present study.


Author(s):  
Dhanasekaran S ◽  
Karunanithi T

This investigation reports on the experimental and theoretical investigation carried out to evaluate the bubble diameter and effective interfacial area in a novel Hybrid Rotating and Reciprocating Perforated Plate Bubble Column. Air-water system is used in this investigation. Countercurrent mode is employed. The effects of agitation level, superficial gas velocity and superficial liquid velocity on the bubble size distribution are studied. The mean bubble diameter is predicted using photographic technique. A simple correlation is developed for the determination of mean bubble diameter. It is found that the mean bubble diameter values for hybrid column are 1.8 to 2.5 times smaller when compared with conventional reciprocating plate column. The interfacial area is calculated based on the experimental results of the gas holdup and bubble diameter. Effects of agitation level, superficial gas velocity, superficial liquid velocity and plate free area on the interfacial area have been investigated. Correlations are developed for the determination of interfacial area for both mixer-settler and emulsion regions. It could be noted that the interfacial area for the hybrid column is 3 to 6 times higher in both mixer-settler region and emulsion region than that of conventional reciprocating plate column which is quite large.


2016 ◽  
Vol 37 (4) ◽  
pp. 545-557 ◽  
Author(s):  
Bronisław Buczek ◽  
Piotr Zabierowski

Abstract Experiments on a confined fluidized bed system with various shapes of particles have been presented in the paper. Its influence on hydrodynamic properties in the whole range of gas velocity has been analysed. Relations allowing calculation of the Richardson-Zaki-type equation coefficients, including description of inter-particle void and gas pressure drop in such systems have been determined. Necessary condition for confined fluidization of non-spherical coarse particles has also been determined.


1987 ◽  
Vol 36 (11) ◽  
pp. 5251-5264 ◽  
Author(s):  
J. E. M. Haverkort ◽  
J. P. Woerdman ◽  
P. R. Berman

2006 ◽  
Vol 78 (11) ◽  
pp. 2203-2209 ◽  
Author(s):  
H. I. Madsen ◽  
T. Hvitved-Jacobsen ◽  
J. Vollertsen

Sign in / Sign up

Export Citation Format

Share Document