Transport Phenomena in Zonal Centrifuge Rotors. VII. Two-Dimensional Transient Flow Patterns and Shear Stress Distributions

1972 ◽  
Vol 11 (4) ◽  
pp. 556-563 ◽  
Author(s):  
H. D. Pham ◽  
H. -W. Hsu
1967 ◽  
Vol 30 (3) ◽  
pp. 547-560 ◽  
Author(s):  
Ian S. Gartshore

The equations of mean motion indicate that two-dimensional turbulent wakes, when subjected to appropriately tailored adverse pressure gradients, can be self-preserving. An experimental examination of two nearly self-preserving wakes is reported here. Mean velocity, longitudinal and lateral turbulence intensity, inter-mittency and shear stress distributions have been measured and are compared with Townsend's data from the small-deficit undistorted wake. In comparison with the undistorted case, the present wakes have slightly lower turbulent intensities and significantly lower shear stresses, all quantities being non-dimensionalized by a local velocity scale taken as the maximum mean velocity deficit. A consideration of the reasons for the shear stress reduction leads to an expression from which the shear stresses in any symmetrical free equilibrium shear flow can be found. This relationship is used to calculate the rate of growth in the measured wakes, with reasonable success.


Mathieu’s approach to the fundamental problem of plane strain (but equally applicable to plane stress) with rectangular boundaries is extended so as to encompass completely arbitrary (normal and/or shear) stress distributions acting along the four edges. The method consists in breaking up the full solution into eight basic problem types which, by appropriate superposition, can be made to describe exactly the internal stress distribution arising from any imposed force distribution throughout the boundaries.


1992 ◽  
Vol 20 (2) ◽  
pp. 83-105 ◽  
Author(s):  
J. P. Jeusette ◽  
M. Theves

Abstract During vehicle braking and cornering, the tire's footprint region may see high normal contact pressures and in-plane shear stresses. The corresponding resultant forces and moments are transferred to the wheel. The optimal design of the tire bead area and the wheel requires a detailed knowledge of the contact pressure and shear stress distributions at the tire/rim interface. In this study, the forces and moments obtained from the simulation of a vehicle in stationary braking/cornering conditions are applied to a quasi-static braking/cornering tire finite element model. Detailed contact pressure and shear stress distributions at the tire/rim interface are computed for heavy braking and cornering maneuvers.


Author(s):  
Brett Freidkes ◽  
David A. Mills ◽  
Casey Keane ◽  
Lawrence S. Ukeiley ◽  
Mark Sheplak

1968 ◽  
Vol 19 (1) ◽  
pp. 1-19 ◽  
Author(s):  
H. McDonald

SummaryRecently two authors, Nash and Goldberg, have suggested, intuitively, that the rate at which the shear stress distribution in an incompressible, two-dimensional, turbulent boundary layer would return to its equilibrium value is directly proportional to the extent of the departure from the equilibrium state. Examination of the behaviour of the integral properties of the boundary layer supports this hypothesis. In the present paper a relationship similar to the suggestion of Nash and Goldberg is derived from the local balance of the kinetic energy of the turbulence. Coupling this simple derived relationship to the boundary layer momentum and moment-of-momentum integral equations results in quite accurate predictions of the behaviour of non-equilibrium turbulent boundary layers in arbitrary adverse (given) pressure distributions.


2021 ◽  
pp. 112891
Author(s):  
Congcong Hao ◽  
Wenjun Zhang ◽  
Bin Wu ◽  
Zhidong Zhang ◽  
Jian He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document