Carbon Dioxide Mass Transfer in Gas–Liquid–Liquid System

2012 ◽  
Vol 51 (15) ◽  
pp. 5585-5591 ◽  
Author(s):  
Alicia García-Abuín ◽  
Diego Gómez-Díaz ◽  
José M. Navaza
2013 ◽  
Vol 11 (1) ◽  
pp. 511-516 ◽  
Author(s):  
A. Couvert ◽  
A. García‐Abuín ◽  
D. Gómez‐Díaz ◽  
J. M. Navaza ◽  
P. Rodríguez-Dafonte

Abstract This work analyzes carbon dioxide mass transfer rate during chemical absorption from a gas phase to a liquid–liquid system based on an aqueous phase (glucosamine or pyrrolidine solutions) and an organic one. Two different kinds of silicone oil with different viscosity were used to perform the liquid phases, and it allows the analysis of the influence of this variable upon mass transfer rate. In these systems, a surfactant (Tween80) was added to stabilize the liquid–liquid system, and therefore, the influence of the presence of this surfactant in the liquid phase was studied. This substance produces a positive effect upon carbon dioxide absorption rate in glucosamine aqueous solutions, but the opposite effect was observed for the other amine employed in this work. Also, the influence caused by different operation variables, such as the gas flow-rate fed to the bubble contactor or the silicone oil concentration in the liquid phase, was studied.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4329
Author(s):  
Radek Šulc ◽  
Jan Dymák

The gas–liquid hydrodynamics and mass transfer were studied in a concentric tube internal jet-loop airlift reactor with a conical bottom. Comparing with a standard design, the gas separator was equipped with an adjustable deflector placed above the riser. The effect of riser superficial gas velocity uSGR on the total gas holdup εGT, homogenization time tH, and overall volumetric liquid-phase mass transfer coefficient kLa was investigated in a laboratory bioreactor, of 300 mm in inner diameter, in a two-phase air–water system and three-phase air–water–PVC–particle system with the volumetric solid fraction of 1% for various deflector clearances. The airlift was operated in the range of riser superficial gas velocity from 0.011 to 0.045 m/s. For the gas–liquid system, when reducing the deflector clearance, the total gas holdup decreased, the homogenization time increased twice compared to the highest deflector clearance tested, and the overall volumetric mass transfer coefficient slightly increased by 10–17%. The presence of a solid phase shortened the homogenization time, especially for lower uSGR and deflector clearance, and reduced the mass transfer coefficient by 15–35%. Compared to the gas–liquid system, the noticeable effect of deflector clearance was found for the kLa coefficient, which was found approx. 20–29% higher for the lowest tested deflector clearance.


Author(s):  
Shogo Hosoda ◽  
Ryosuke Sakata ◽  
Kosuke Hayashi ◽  
Akio Tomiyama

Mass transfer from single carbon dioxide bubbles in a vertical pipe is measured using a stereoscopic image processing method to develop a mass transfer correlation applicable to a wide range of bubble and pipe diameters. The pipe diameters are 12.5, 18.2 and 25.0 mm and the bubble diameter ranges from 5 to 26 mm. The ratio, λ, of bubble diameter to pipe diameter is therefore varied from 0.2 to 1.8, which covers various bubble shapes such as spherical, oblate spheroidal, wobbling, cap, and Taylor bubbles. Measured Sherwood numbers, Sh, strongly depend on bubble shape, i.e., Sh of Taylor bubbles clearly differs from those of spheroidal and wobbling bubbles. Hence two Sherwood number correlations, which are functions of the Peclet number and the diameter ratio λ, are deduced from the experimental data: one is for small bubbles (λ < 0.6) and the other for Taylor bubbles (λ > 0.6). The applicability of the proposed correlations for the prediction of bubble dissolution process is examined through comparisons between measured and predicted long-term bubble dissolution processes. The predictions are carried out by taking into account the presence of all the gas components in the system of concern, i.e. nitrogen, oxygen and carbon dioxide. As a result, good agreements for the dissolution processes for various bubble sizes and pipe diameters are obtained. It is also demonstrated that it is possible to evaluate an equilibrium bubble diameter and instantaneous volume concentration of carbon dioxide in a bubble using a simple model based on a conservation of gas components.


Author(s):  
Caitlin Gerdes ◽  
Taylor N. Suess ◽  
Gary A. Anderson ◽  
Stephen P. Gent

Proper light penetration is an essential design consideration for effective algae growth in column photobioreactors. This research focuses on the placement of light guides within a photobioreactor (PBR), and the effect they have on heat transfer, mass transfer, bubble and fluid flow patterns, and mixing. Studies have been done on a rectangular column photobioreactor (34.29 cm long × 15.25 cm wide × 34.29 cm tall) with two light panels along the front and back of the PBR. A bubble sparger is placed along the center of the bottom length of the PBR with both height and width of 1.27 cm and a length of 33.02 cm. Different configurations and numbers of light guides (1.27 cm diameter) running horizontally from the front to the back of the PBR are modeled using the Computational Fluid Dynamics (CFD) software Star-CCM+. It is hypothesized that the addition of light guides will change the flow pattern but not adversely affect the heat or mass transfer of the carbon dioxide bubbles within the PBR. Potential concerns of light guide placement include inhibiting the flow of the carbon dioxide bubbles or creating regions of high temperature, which could potentially kill the algae. Benefits of light guides include increased light penetration and photosynthesis within the PBR. Five different light guide setups are tested with the carbon dioxide bubbles and water modeled as a turbulent multiphase gas-liquid mixture. The near wall standard k-epsilon two layer turbulence model was used, as it takes into account the viscosity influences between the liquid and gaseous phases. Eight different bubble volumetric flow rates are simulated. The bubble flow patterns, temperature distribution, Nusselt number, Reynolds number, and velocity are all analyzed. The results indicate square arrays of light guides give the most desirable velocity distribution, with less area of zero velocity compared to the staggered light guide setup. Temperature distribution is generally even for all configurations of light guides.


2010 ◽  
Vol 65 (15) ◽  
pp. 4460-4471 ◽  
Author(s):  
Tapio Salmi ◽  
Henrik Grénman ◽  
Heidi Bernas ◽  
Johan Wärnå ◽  
Dmitry Yu. Murzin

Sign in / Sign up

Export Citation Format

Share Document