Thermal decomposition of energetic materials. 6. Solid-phase transitions and the decomposition of 1,2,3-triaminoguanidinium

1985 ◽  
Vol 89 (20) ◽  
pp. 4325-4329 ◽  
Author(s):  
Y. Oyumi ◽  
T. B. Brill
Author(s):  
Jako S. Eensalu ◽  
Kaia Tõnsuaadu ◽  
Jasper Adamson ◽  
Ilona Oja Acik ◽  
Malle Krunks

AbstractThermal decomposition of tris(O-ethyldithiocarbonato)-antimony(III) (1), a precursor for Sb2S3 thin films synthesized from an acidified aqueous solution of SbCl3 and KS2COCH2CH3, was monitored by simultaneous thermogravimetry, differential thermal analysis and evolved gas analysis via mass spectroscopy (TG/DTA-EGA-MS) measurements in dynamic Ar, and synthetic air atmospheres. 1 was identified by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) measurements, and quantified by NMR and elemental analysis. Solid intermediates and final decomposition products of 1 prepared in both atmospheres were determined by X-ray diffraction (XRD), Raman spectroscopy, and FTIR. 1 is a complex compound, where Sb is coordinated by three ethyldithiocarbonate ligands via the S atoms. The thermal degradation of 1 in Ar consists of three mass loss steps, and four mass loss steps in synthetic air. The total mass losses are 100% at 800 °C in Ar, and 66.8% at 600 °C in synthetic air, where the final product is Sb2O4. 1 melts at 85 °C, and decomposes at 90–170 °C into mainly Sb2S3, as confirmed by Raman, and an impurity phase consisting mostly of CSO 2 2− ligands. The solid-phase mineralizes fully at ≈240 °C, which permits Sb2S3 to crystallize at around 250 °C in both atmospheres. The gaseous species evolved include CS2, C2H5OH, CO, CO2, COS, H2O, SO2, and minor quantities of C2H5SH, (C2H5)2S, (C2H5)2O, and (S2COCH2CH3)2. The thermal decomposition mechanism of 1 is described with chemical reactions based on EGA-MS and solid intermediate decomposition product analysis.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1014
Author(s):  
Macy L. Sprunger ◽  
Meredith E. Jackrel

Aberrant protein folding underpins many neurodegenerative diseases as well as certain myopathies and cancers. Protein misfolding can be driven by the presence of distinctive prion and prion-like regions within certain proteins. These prion and prion-like regions have also been found to drive liquid-liquid phase separation. Liquid-liquid phase separation is thought to be an important physiological process, but one that is prone to malfunction. Thus, aberrant liquid-to-solid phase transitions may drive protein aggregation and fibrillization, which could give rise to pathological inclusions. Here, we review prions and prion-like proteins, their roles in phase separation and disease, as well as potential therapeutic approaches to counter aberrant phase transitions.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jing Zhou ◽  
Li Ding ◽  
Yong Zhu ◽  
Bozhou Wang ◽  
Xiangzhi Li ◽  
...  

AbstractOrganic inner salt structures are ideal backbones for heat-resistant energetic materials and systematic studies towards the thermal properties of energetic organic inner salt structures are crucial to their applications. Herein, we report a comparative thermal research of two energetic organic inner salts with different tetraazapentalene backbones. Detailed thermal decomposition behaviors and kinetics were investigated through differential scanning calorimetry and thermogravimetric analysis (DSC-TG) methods, showing that the thermal stability of the inner salts is higher than most of the traditional heat-resistant energetic materials. Further studies towards the thermal decomposition mechanism were carried out through condensed-phase thermolysis/Fourier-transform infrared (in-situ FTIR) spectroscopy and the combination of differential scanning calorimetry-thermogravimetry-mass spectrometry-Fourier-transform infrared spectroscopy (DSC-TG-MS-FTIR) techniques. The experiment and calculation results prove that the arrangement of the inner salt backbones has great influence on the thermal decompositions of the corresponding energetic materials. The weak N4-N5 bond in “y-” pattern tetraazapentalene backbone lead to early decomposition process and the “z-” pattern tetraazapentalene backbone exhibits more concentrated decomposition behaviors.


2001 ◽  
Vol 58 (2) ◽  
pp. 183-189 ◽  
Author(s):  
Paola González Audino ◽  
Susana A Licastro ◽  
Eduardo Zerba

1994 ◽  
Vol 127 (1) ◽  
pp. 41-99 ◽  
Author(s):  
Paolo Cermelli ◽  
Morton E. Gurtin

Sign in / Sign up

Export Citation Format

Share Document