Role of charge-transfer interactions in photoreactions. 4. Photophysical study of exciplexes between trans-9-styrylphenanthrene and amines

1988 ◽  
Vol 92 (12) ◽  
pp. 3394-3399 ◽  
Author(s):  
G. G. Aloisi ◽  
F. Masetti ◽  
F. Elisei ◽  
U. Mazzucato
2015 ◽  
Vol 163 ◽  
pp. 21-27 ◽  
Author(s):  
Jyotirmay Maiti ◽  
Yeasmin Sarkar ◽  
Partha Pratim Parui ◽  
Sandipan Chakraborty ◽  
Suman Biswas ◽  
...  

Author(s):  
Weidong Qiu ◽  
Xinyi Cai ◽  
Mengke Li ◽  
Liangying Wang ◽  
Yanmei He ◽  
...  

Dynamic adjustment of emission behaviours by controlling the extent of twisted intramolecular charge transfer character in excited state.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 781
Author(s):  
Ernesto Enríquez-Palacios ◽  
Teresa Arbeloa ◽  
Jorge Bañuelos ◽  
Claudia I. Bautista-Hernández ◽  
José G. Becerra-González ◽  
...  

Herein we report on a straightforward access method for boron dipyrromethene dyes (BODIPYs)-coumarin hybrids linked through their respective 8- and 6- positions, with wide functionalization of the coumarin fragment, using salicylaldehyde as a versatile building block. The computationally-assisted photophysical study unveils broadband absorption upon proper functionalization of the coumarin, as well as the key role of the conformational freedom of the coumarin appended at the meso position of the BODIPY. Such free motion almost suppresses the fluorescence signal, but enables us to apply these dyads as molecular rotors to monitor the surrounding microviscosity.


2005 ◽  
Vol 103 (6) ◽  
pp. 1156-1166 ◽  
Author(s):  
Kevin J. Gingrich ◽  
Son Tran ◽  
Igor M. Nikonorov ◽  
Thomas J. Blanck

Background Volatile anesthetics depress cardiac contractility, which involves inhibition of cardiac L-type calcium channels. To explore the role of voltage-dependent inactivation, the authors analyzed halothane effects on recombinant cardiac L-type calcium channels (alpha1Cbeta2a and alpha1Cbeta2aalpha2/delta1), which differ by the alpha2/delta1 subunit and consequently voltage-dependent inactivation. Methods HEK-293 cells were transiently cotransfected with complementary DNAs encoding alpha1C tagged with green fluorescent protein and beta2a, with and without alpha2/delta1. Halothane effects on macroscopic barium currents were recorded using patch clamp methodology from cells expressing alpha1Cbeta2a and alpha1Cbeta2aalpha2/delta1 as identified by fluorescence microscopy. Results Halothane inhibited peak current (I(peak)) and enhanced apparent inactivation (reported by end pulse current amplitude of 300-ms depolarizations [I300]) in a concentration-dependent manner in both channel types. alpha2/delta1 coexpression shifted relations leftward as reported by the 50% inhibitory concentration of I(peak) and I300/I(peak)for alpha1Cbeta2a (1.8 and 14.5 mm, respectively) and alpha1Cbeta2aalpha2/delta1 (0.74 and 1.36 mm, respectively). Halothane reduced transmembrane charge transfer primarily through I(peak) depression and not by enhancement of macroscopic inactivation for both channels. Conclusions The results indicate that phenotypic features arising from alpha2/delta1 coexpression play a key role in halothane inhibition of cardiac L-type calcium channels. These features included marked effects on I(peak) inhibition, which is the principal determinant of charge transfer reductions. I(peak) depression arises primarily from transitions to nonactivatable states at resting membrane potentials. The findings point to the importance of halothane interactions with states present at resting membrane potential and discount the role of inactivation apparent in current time courses in determining transmembrane charge transfer.


Sign in / Sign up

Export Citation Format

Share Document