Photochemistry of a Water-Soluble Polymeric Derivative of Chlorophyll1a

1966 ◽  
Vol 70 (10) ◽  
pp. 3307-3314 ◽  
Author(s):  
R. G. Jensen ◽  
G. R. Seely ◽  
L. P. Vernon
1993 ◽  
Vol 58 (10) ◽  
pp. 2321-2336 ◽  
Author(s):  
Zhong-wei Gu ◽  
John D. Spikes ◽  
Pavla Kopečková ◽  
Jindřich Kopeček

In cancer photodynamic therapy (PDT), improved efficiency of photosensitizer delivery to tumors may be obtained by binding them to targetable water soluble polymeric carriers. However, attachment of photosensitizers to Macromolecular carriers may alter their spectral and photosensitizing properties. In this study, a new monosubstituted phthalocyanine derivative, N-glycyl zinc(II) 4,9,16,23-tetraaminophthalocyanine (G-TAPC-Zn) was synthesized by the reaction of zinc(II) 4,9,16,23-tetraaminophthalocyanine (TAPC-Zn) with N-tert-butoxycarbonyl-glycine N'-hydroxybenzotriazole ester followed by deprotection of the tert-butoxycarbonyl (BOC) group. G-TAPC-Zn contains an aliphatic amino group suitable for attachment to water soluble polymeric carriers. By aminolysis of a polymeric precursor, an N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer containing oligopeptide (GFLG) side-chains terminated in p-nitrophenyl ester groups, with G-TAPC-Zn a polymeric derivative of the latter (P-GFLGG-TAPC-Zn) was synthesized. Spectral data indicated that in aqueous solutions P-GFLGG-TAPC-Zn formed aggregates. The degree of aggregation decreased with increasing concentration of detergents or organic solvents in buffer solutions. Consequently, the release of the drug from carrier catalyzed by thiol proteinases, papain or cathepsin B, took place only in the presence of detergents or organic solvents, i.e., under conditions with a lower probability of aggregate formation. Binding of G-TAPC-Zn to HPMA copolymers decreased the quantum yield of singlet oxygen generation from 0.24 to 0.063 and significantly increased its resistance to photobleaching.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 474 ◽  
Author(s):  
Andrea Cesari ◽  
Alessandra Recchimurzo ◽  
Angela Fabiano ◽  
Federica Balzano ◽  
Nicolò Rossi ◽  
...  

Cyclodextrin-grafted polymers are attractive biomaterials that could bring together the host–guest complexing capability of pristine cyclodextrin and the pharmaceutical features of the polymeric backbone. The present paper is aimed at characterizing the potential application of ammonium–chitosan grafted with 2-methyl-β-cyclodextrin (N+-rCh-MCD) as the functional macromolecular complexing agent for the oral administration of the neuropeptide dalargin (DAL). Specific NMR characterization procedures, along with UV and fluorescence techniques, as well as biological in vitro assessments have been performed. The results indicate that N+-rCh-MCD forms water-soluble complexes with DAL, with a prevalent involvement of Tyr or Phe over Leu and Ala residues. The association constant of DAL with the polymeric derivative is one order of magnitude higher than that with the pristine cyclodextrin (Ka: 2600 M−1 and 120 M−1, respectively). Additionally, N+-rCh-MCD shields DAL from enzymatic degradation in gastrointestinal in vitro models with a three-fold time delay, suggesting a future pharmaceutical exploitation of the polymeric derivative. Therefore, the greater affinity of N+-rCh-MCD for DAL and its protective effect against enzymatic hydrolysis can be attributed to the synergistic cooperation between cyclodextrin and the polymer, which is realized only when the former is covalently linked to the latter.


1992 ◽  
Vol 47 (9) ◽  
pp. 1300-1306 ◽  
Author(s):  
Rongnong Zhou ◽  
Kurt E. Geckeler

The complexing behavior of poly(ethyleneimine) 5-sulfonyl-8-hydroxyquinoline (POX) with palladium(II) ions in aqueous solution was studied by means of spectrophotometry in the visible region. It was shown that poly(ethyleneimine) 5-sulfonyl-8-hydroxyquinoline forms a stable, water-soluble, orange-colored complex which has a maximum absorption at a wavelength of 424 nm. The effect of pH, concentration of poly(ethyleneimine) 5-sulfonyl-8-hydroxyquinoline, concentration of palladium(II) ions, and time were investigated. The results show that in a pH range between 2 and 5, the absorbance is constant for 40 minutes. The linear concentration range for palladium(II) ions was determined to be 0-2.5 μg · ml-1 and the molar extinction coefficients 1.06 · 104 (1 · mol-1 · cm-1) for the polymeric derivative and 7.15 · 103 for the monomeric 8-hydroxyquinoline. The effect of tartaric acid as a masking agent was examined in order to eliminate the influence from other ions. The simultaneous presence of K(I), Cs(I), Li(I), Ba(II), Ca(II), Cd(II), Hg(II), Mn(II), Ni(II), Al(III), As(III), Au(III), Cr(III), Fe(III), Pt(IV), As(V) did not interfere with the complexation of poly(ethyleneimine) 5-sulfonyl-8-hydroxyquinoline and palladium(II). However, it was found that NH4+ interferes strongly. The polymer 8-hydroxyquinoline derivative exhibited a 45% higher sensitivity to Pd(II) ions in comparison to the low-molecular-weight 8-hydroxyquinoline.


Author(s):  
J. G. Robertson ◽  
D. F. Parsons

The extraction of lipids from tissues during fixation and embedding for electron microscopy is widely recognized as a source of possible artifact, especially at the membrane level of cell organization. Lipid extraction is also a major disadvantage in electron microscope autoradiography of radioactive lipids, as in studies of the uptake of radioactive fatty acids by intestinal slices. Retention of lipids by fixation with osmium tetroxide is generally limited to glycolipids, phospholipids and highly unsaturated neutral lipids. Saturated neutral lipids and sterols tend to be easily extracted by organic dehydrating reagents prior to embedding. Retention of the more saturated lipids in embedded tissue might be achieved by developing new cross-linking reagents, by the use of highly water soluble embedding materials or by working at very low temperatures.


Author(s):  
J. D. McLean ◽  
S. J. Singer

The successful application of ferritin labeled antibodies (F-A) to ultrathin sections of biological material has been hampered by two main difficulties. Firstly the normally used procedures for the preparation of material for thin sectioning often result in a loss of antigenicity. Secondly the polymers employed for embedding may non-specifically absorb the F-A. Our earlier use of cross-linked polyampholytes as embedding media partially overcame these problems. However the water-soluble monomers used for this method still extract many lipids from the material.


Author(s):  
D.R. Mattie ◽  
J.W. Fisher

Jet fuels such as JP-4 can be introduced into the environment and come in contact with aquatic biota in several ways. Studies in this laboratory have demonstrated JP-4 toxicity to fish. Benzene is the major constituent of the water soluble fraction of JP-4. The normal surface morphology of bluegill olfactory lamellae was examined in conjunction with electrophysiology experiments. There was no information regarding the ultrastructural and physiological responses of the olfactory epithelium of bluegills to acute benzene exposure.The purpose of this investigation was to determine the effects of benzene on the surface morphology of the nasal rosettes of the bluegill sunfish (Lepomis macrochirus). Bluegills were exposed to a sublethal concentration of 7.7±0.2ppm (+S.E.M.) benzene for five, ten or fourteen days. Nasal rosettes were fixed in 2.5% glutaraldehyde and 2.0% paraformaldehyde in 0.1M cacodylate buffer (pH 7.4) containing 1.25mM calcium chloride. Specimens were processed for scanning electron microscopy.


Author(s):  
H. J. Arnott ◽  
M. A. Webb ◽  
L. E. Lopez

Many papers have been published on the structure of calcium oxalate crystals in plants, however, few deal with the early development of crystals. Large numbers of idioblastic calcium oxalate crystal cells are found in the leaves of Vitis mustangensis, V. labrusca and V. vulpina. A crystal idioblast, or raphide cell, will produce 150-300 needle-like calcium oxalate crystals within a central vacuole. Each raphide crystal is autonomous, having been produced in a separate membrane-defined crystal chamber; the idioblast''s crystal complement is collectively embedded in a water soluble glycoprotein matrix which fills the vacuole. The crystals are twins, each having a pointed and a bidentate end (Fig 1); when mature they are about 0.5-1.2 μn in diameter and 30-70 μm in length. Crystal bundles, i.e., crystals and their matrix, can be isolated from leaves using 100% ETOH. If the bundles are treated with H2O the matrix surrounding the crystals rapidly disperses.


Author(s):  
B. J. Grenon ◽  
A. J. Tousimis

Ever since the introduction of glutaraldehyde as a fixative in electron microscopy of biological specimens, the identification of impurities and consequently their effects on biologic ultrastructure have been under investigation. Several reports postulate that the impurities of glutaraldehyde, used as a fixative, are glutaric acid, glutaraldehyde polymer, acrolein and glutaraldoxime.Analysis of commercially available biological or technical grade glutaraldehyde revealed two major impurity components, none of which has been reported. The first compound is a colorless, water-soluble liquid with a boiling point of 42°C at 16 mm. Utilizing Nuclear Magnetic Resonance (NMR) spectroscopic analysis, this compound has been identified to be — dihydro-2-ethoxy 2H-pyran. This impurity component of the glutaraldehyde biological or technical grades has an UV absorption peak at 235nm. The second compound is a white amorphous solid which is insoluble in water and has a melting point of 80-82°C. Initial chemical analysis indicates that this compound is an aldol condensation product(s) of glutaraldehyde.


2020 ◽  
Vol 56 (65) ◽  
pp. 9332-9335
Author(s):  
Sandra Estalayo-Adrián ◽  
Salvador Blasco ◽  
Sandra A. Bright ◽  
Gavin J. McManus ◽  
Guillermo Orellana ◽  
...  

Two new water-soluble amphiphilic Ru(ii) polypyridyl complexes were synthesised and their photophysical and photobiological properties evaluated; both complexes showed a rapid cellular uptake and phototoxicity against HeLa cervical cancer cells.


Sign in / Sign up

Export Citation Format

Share Document