Competitive inhibitor binding to the binuclear copper active site in tyrosinase

1981 ◽  
Vol 103 (23) ◽  
pp. 7001-7003 ◽  
Author(s):  
Marjorie E. Winkler ◽  
Konrad Lerch ◽  
Edward I. Solomon
2021 ◽  
Author(s):  
Brian Caffrey ◽  
Xing Zhu ◽  
Alison Berezuk ◽  
Katharine Tuttle ◽  
Sagar Chittori ◽  
...  

The human AAA ATPase p97, a potential cancer target, plays a vital role in clearing misfolded proteins. p97 dysfunction is also known to play a crucial role in several neurodegenerative disorders. Here, we present cryo-EM structural analyses of four disease mutants p97R155H, p97R191Q, p97A232E, p97D592N, as well as p97E470D, implicated in resistance to the drug CB-5083. These structures demonstrate that the mutations affect nucleotide-driven p97 allosteric activation by predominantly interfering with either the coupling between the D1 and N-terminal domains (p97R155H and p97R191Q), the inter-protomer interactions (p97A232E), or the coupling between D1 and D2 nucleotide domains (p97D592N, p97E470D). We also show that binding of the competitive inhibitor CB-5083 to the D2 domain prevents conformational changes similar to that seen for mutations that affect coupling between D1 and D2 domains. Our studies enable tracing of the path of allosteric activation across p97 and establish a common mechanistic link between active site inhibition and defects in allosteric activation by disease-causing mutations.


Author(s):  
Richard S. Himmelwright ◽  
Nancy C. Eickman ◽  
Aloysius F. Hepp ◽  
Edward I. Solomon

1979 ◽  
Vol 181 (1) ◽  
pp. 137-142 ◽  
Author(s):  
M N Woodroofe ◽  
P J Butterworth

The arginine-specific reagents 2,3-butanedione and phenylglyoxal inactivate pig kidney alkaline phosphatase. As inactivation proceeds there is a progressive fall in Vmax. of the enzyme, but no demonstrable change in the Km value for substrate. Pi, a competitive inhibitor, and AMP, a substrate of the enzyme, protect alkaline phosphatase against the arginine-specific reagents. These effects are explicable by the assumption that the enzyme contains an essential arginine residue at the active site. Protection is also afforded by the uncompetitive inhibitor NADH through a partially competive action against the reagents. Enzyme that has been exposed to the reagents has a decreased sensitivity to NADH inhibition. It is suggested that an arginine residue is important for NADH binding also, although this residue is distinct from that at the catalytic site. The protection given by NADH against loss of activity is indicative of the close proximity of the active and NADH sites.


1992 ◽  
Vol 285 (3) ◽  
pp. 957-964 ◽  
Author(s):  
T G Warner ◽  
R Harris ◽  
R McDowell ◽  
E R Vimr

The sialidase from Salmonella typhimurium LT2 was characterized by using photoaffinity-labelling techniques. The well-known sialidase inhibitor 5-acetamido-2,6-anhydro-3,5-dideoxy-D-glycero-D-galacto-non- 2-enonic acid (Neu5Ac2en) was modified to contain an amino group at C-9, which permitted the incorporation of 4-azidosalicylic acid in amide linkage at this position. Labelling of the purified protein with the radioactive (125I) photoprobe was determined to be highly specific for a region within the active-site cavity. This conclusion was based on the observation that the competitive inhibitor Neu5Ac2en in the photolysis mixture prevented labelling of the protein. In contrast, compounds with structural and chemical features similar to the probe and Neu5Ac2en, but which were not competitive enzyme inhibitors, did not affect the photolabelling of the protein. The peptide interacting with the probe was identified by CNBr treatment of the labelled protein, followed by N-terminal sequence analysis. Inspection of the primary structure of the protein, predicted from the cloned structural gene for the sialidase [Hoyer, Hamilton, Steenbergen & Vimr (1992) Mol. Microbiol. 6, 873-884] revealed that the label was incorporated into a 9.6 kDa fragment situated within the terminal third of the molecule near the C-terminal end. Secondary-structural predictions using the Garnier-Robson algorithm [Garnier, Osguthorpe & Robson (1978) J. Mol. Biol. 120, 97-120] of the labelled peptide revealed a structural similarity to the active site of influenza-A- and Sendai-HN-virus sialidases with a repetitive series of alternating beta-sheets connected with loops.


1969 ◽  
Vol 54 (1) ◽  
pp. 245-264 ◽  
Author(s):  
Arthur Karlin

The receptor for acetylcholine in the subsynaptic membrane of the electroplax of Electrophorus electricus is a protein with a disulfide bond in the vicinity of the active site. This disulfide can be reduced and reoxidized with concomitant inhibition and restoration of the response to acetylcholine and other monoquaternary ammonium-depolarizing agents. Conversely, the bisquaternary hexamethonium, normally a competitive inhibitor, causes depolarization, and the activity of decamethonium is increased following reduction of the disulfide. The reduced receptor can be alkylated by various maleimide derivatives and is then no longer reoxidizable. Some quaternary ammonium maleimide derivatives act as affinity labels of the reduced receptor, alkylating it at a rate three orders of magnitude faster then do uncharged maleimide derivatives. Other types of potential affinity labels also react only with the reduced receptor and the resulting covalently attached quaternary ammonium moieties interact with the active site, strongly activating the receptor. These results suggest a model for the active site and its transitions in which an activator such as acetylcholine bridges between a negative subsite and a hydrophobic subsite in the vicinity of the disulfide, causing an altered conformation around the negative subsite and a decrasee of a few angstroms in the distance between the two subsites.


Sign in / Sign up

Export Citation Format

Share Document