Plant Sunscreens in the UV-B: Ultraviolet Spectroscopy of Jet-Cooled Sinapoyl Malate, Sinapic Acid, and Sinapate Ester Derivatives

2014 ◽  
Vol 136 (42) ◽  
pp. 14780-14795 ◽  
Author(s):  
Jacob C. Dean ◽  
Ryoji Kusaka ◽  
Patrick S. Walsh ◽  
Florent Allais ◽  
Timothy S. Zwier
2020 ◽  
Vol 6 (4) ◽  
pp. 380-387
Author(s):  
Jaswinder Kaur Virk ◽  
Vikas Gupta ◽  
Mukesh Maithani ◽  
Ravindra K. Rawal ◽  
Sanjiv Kumar ◽  
...  

Background: Vriddhi is one of the Rasayana herbs in Ayurveda broadly used in vitality, strengthening Ayurvedic formulations. To fulfill steeply increased demand and declined supply, tubers have been collected in destructive manner resulting in reduced plant population and pushing the plant in Red list of IUCN endangered species. However, manufacturers are using substitutes and other substandard drugs leading to adulteration which puts the importance of therapeutically rich herbal plants at stake. Lack of chemical markers is the main inability of regulatory authorities for not taking any action against this adulteration. Objective: Isolation of chemical marker of plant that can be used as a reference compound for identification of unauthorized substitution. Methods: Preliminary phytochemical screening of methanolic and toluene extract of H. intermedia D. Don was done using standard methods followed by column chromatography for the isolation of phytoconstituents. A total of 3004 fractions were collected with Thin Layer Chromatography (TLC) profiling and different fractions were pooled. A single compound was isolated and confirmed by chemical test, melting point, spectral analysis and compared with the literature. Results: Phytochemical screening of extracts shows the presence of alkaloids, carbohydrates, steroids, terpenoids, flavonoids, tannins and phenolics. A pure white crystalline powder was isolated by column chromatography which was characterized as 3,5-dimethoxy-4- hydroxycinnamic acid (Sinapic acid) with the help of IR and Mass spectroscopy. Conclusion: This is the first report of Sinapic acid as a novel compound from Vriddhi, Habenaria genus and Orchidaceae family. It can be used as a marker for the identification of unauthorized substitution and adulteration claiming the use of Vriddhi.


2021 ◽  
Vol 145 ◽  
pp. 105940
Author(s):  
Ezinne C. Achinivu ◽  
Amandine L. Flourat ◽  
Fanny Brunissen ◽  
Florent Allais

1973 ◽  
Vol 51 (3) ◽  
pp. 438-447 ◽  
Author(s):  
R. Makhija ◽  
L. Pazdernik ◽  
R. Rivest

A new series of octahedral cobalt(II) complexes are formed when CoX2(X = Cl, Br, I, SCN) reacts with Hg(SCN)2 in the presence of Lewis bases. These complexes of stoichiometry CoHg(SCN)4•2L (L = THF, dioxane, pyridine, aniline) are pink to violet solids which slowly decompose to the blue crystalline solid, CoHg(SCN)4, the stable magnetic susceptibility standard. On further reaction of CoHg(SCN)4•2THF with mono-, bi-, and polydentate ligands in dry ethanol, complexes of the following types are obtained: CoHg(SCN)4•2L (L = PΦ3), CoHg(SCN)4•2LL (LL = trien), CoHg(SCN)4•3LL (LL = en, bipy), and CoHg(SCN)4•4LL (LL = phen). The stoichiometry of these were determined by elemental analysis. Possible structures of these are discussed with the help of mid and far infrared, visible, and ultraviolet spectroscopy, magnetic susceptibility, and X-ray powder diffraction. Some new i.r. bands like Co—P, Co—N, and Hg—S are assigned in the low region.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1142
Author(s):  
Alena Vollmannová ◽  
Janette Musilová ◽  
Judita Lidiková ◽  
Július Árvay ◽  
Marek Šnirc ◽  
...  

Common buckwheat (Fagopyrum esculentum Moench) is a valuable source of proteins, B vitamins, manganese, tryptophan, phytochemicals with an antioxidant effect, and the natural flavonoid rutin. Due to its composition, buckwheat supports the human immune system, regulates blood cholesterol, and is suitable for patients with diabetes or celiac disease. The study aimed to compare the allocation of selected phenolic acids (neochlorogenic acid, chlorogenic acid, trans-caffeic acid, trans-p-coumaric acid, trans-sinapic acid, trans-ferulic acid) and flavonoids (rutin, vitexin, quercetin, kaempferol) in the leaves, flowers, and grain of buckwheat cultivars of different origin. The content of individual phenolics was determined by the HPLC-DAD method. The results confirmed the determining role of cultivar on the relative content of chlorogenic acid, trans-caffeic acid, trans-sinapic acid, vitexin, and kaempferol in buckwheat plants. A significantly negative correlation among concentrations of phenolic acids in different common buckwheat plant parts shows that there are different mechanisms of genetic influences on the concentration of phenolic substances in common buckwheat flowers, leaves, and grain. These differences should be taken into account when breeding buckwheat for a high concentration of selected phenolic substances.


Sign in / Sign up

Export Citation Format

Share Document