A SIRT1 Activator, Ginsenoside Rc, Promotes Energy Metabolism in Cardiomyocytes and Neurons

2021 ◽  
Vol 143 (3) ◽  
pp. 1416-1427
Author(s):  
Qingxia Huang ◽  
Hang Su ◽  
Bin Qi ◽  
Ying Wang ◽  
Kaili Yan ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yu Chen ◽  
Yan Li ◽  
Guoliang Xu ◽  
Guangbin Shang ◽  
Hongning Liu ◽  
...  

Shenfu Injection (SFI) is a common drug used to treat cardiovascular diseases and has a significant effect on cardiogenic shock. Ginsenoside Rc (G-Rc) was an anticardiogenic shock effect component of SFI screened by UHPLC-Q-TOF/MS and multivariate statistical analysis and further selected by molecular docking experiment in our previous study. However, most studies on SFI in the treatment of cardiogenic shock focus on the overall efficacy, and little is known about its effective component on energy metabolism in hypoxia/reoxygenation- (H/R-) induced myocardial injury cells. Therefore, the present study was performed to investigate the dose-effect and time-effect relationship of G-Rc in protecting hypoxic injury of H9c2 cardiomyocytes, and its mechanism on the energy metabolism-related indicators, i.e., adenosine triphosphate (ATP) content, lactate dehydrogenase (LDH) release, and creatine kinase (CK) activity of the myocardial cells, was explored. In this paper, a stable and reliable H/R model of H9c2 cardiomyocytes was established. Compared with the control group, the activity of cardiomyocytes in the H/R group was significantly reduced (P<0.01). The dose-effect and time-effect studies showed that G-Rc could significantly increase cell viability at certain point compared with the H/R group (P<0.01), and the optimum intervention dose and time was 3.33 μmol/L for 12 h. The results concerning energy metabolism mechanism demonstrated that G-Rc pretreatment could improve ATP content, attenuate the LDH leakage, and decrease CK activity and apoptosis rate of H/R cardiomyocytes. Taken together, our findings suggest that G-Rc pretreatment can significantly protect myocardial cells from H/R injury. In addition, G-Rc is able to improve the energy metabolism ability of the injury cardiomyocytes by direct synthesis of ATP and reducing the activity of LDH, CK, and apoptosis rate. These results indicate that G-Rc may be a promising therapeutic candidate for the treatment of cardiovascular disease caused by myocardial H/R injury.


Author(s):  
W.A. Jacob ◽  
R. Hertsens ◽  
A. Van Bogaert ◽  
M. De Smet

In the past most studies of the control of energy metabolism focus on the role of the phosphorylation potential ATP/ADP.Pi on the regulation of respiration. Studies using NMR techniques have demonstrated that the concentrations of these compounds for oxidation phosphorylation do not change appreciably throughout the cardiac cycle and during increases in cardiac work. Hence regulation of energy production by calcium ions, present in the mitochondrial matrix, has been the object of a number of recent studies.Three exclusively intramitochondnal dehydrogenases are key enzymes for the regulation of oxidative metabolism. They are activated by calcium ions in the low micromolar range. Since, however, earlier estimates of the intramitochondnal calcium, based on equilibrium thermodynamic considerations, were in the millimolar range, a physiological correlation was not evident. The introduction of calcium-sensitive probes fura-2 and indo-1 made monitoring of free calcium during changing energy metabolism possible. These studies were performed on isolated mitochondria and extrapolation to the in vivo situation is more or less speculative.


2012 ◽  
Vol 50 (01) ◽  
Author(s):  
S Lünse ◽  
A Krüger ◽  
M Glanemann ◽  
G Damm

2015 ◽  
Vol 53 (01) ◽  
Author(s):  
K Schönefeld ◽  
M Matz-Soja ◽  
J Böttger ◽  
P Seibel ◽  
R Gebhardt
Keyword(s):  

2016 ◽  
Vol 02 (03) ◽  
pp. 133-142
Author(s):  
Andrew Hoffman ◽  
Lauren Battaglia ◽  
Michael DeStefano ◽  
Emine Abali
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document