ginsenoside rc
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 15)

H-INDEX

13
(FIVE YEARS 2)

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6829
Author(s):  
Xuanming Zhang ◽  
Liwen Han ◽  
Peihai Li ◽  
Shanshan Zhang ◽  
Mengqi Zhang ◽  
...  

Panax quinquefolius, a popular medicinal herb, has been cultivated in China for many years. In this work, the region-specific profiles of metabolites in P. quinquefolius from Wendeng was investigated using liquid-chromatography–quadrupole–time-of-flight-(LC–Q–TOF)-based metabolomics analysis. The three most abundant biomarkers, identified as ginsenoside Rb3, notoginsenoside R1, and ginsenoside Rc, were the representative chemical components employed in the network pharmacology analysis. In addition, molecular docking and western blotting analyses revealed that the three compounds were effective binding ligands with Hsp90α, resulting in the inactivation of SRC and PI3K kinase, which eventually led to the inactivation of the Akt and ERK pathways and lung cancer suppression. The outcomes obtained herein demonstrated the intriguing chemical characteristics and potential functional activities of P. quinquefolius from Wendeng.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Lian-yun Du ◽  
Tao Jiang ◽  
Kun Wei ◽  
Shuang Zhu ◽  
Yan-long Shen ◽  
...  

A sensitive method has been developed for simultaneous determination of ginsenoside Rh1 (G-Rh1), ginsenoside Rb1 (G-Rb1), ginsenoside Rc (G-Rc), and ginsenoside Rd (G-Rd) in rat plasma of normal and depression model group after oral administration of their solutions by using Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry (UHPLC-QQQ-MS). The biological samples were prepared by protein precipitation. Ginsenoside Rg3 (G-Rg3) was used as an internal standard (IS). MS analysis was performed under the multiple reaction monitoring (MRM) with electron spray ionization (ESI) operated in the negative mode. The method showed good linearity over a wide concentration range (R2 > 0.999) and obtained lower limits of quantification (LLOQ) of 5 ng/mL. The whole analysis procedure could be completed in as short as 16.5 min. The intraday precisions, interday precisions, and stabilities were less than 10%. The extraction recoveries from rat plasma were exceeded 86.0%. The results indicated that there were significant differences between the two groups on pharmacokinetics parameters; the absorptions of four analytes in the depression group were higher than those in the normal group because the liver metabolism and internal environment of the model rats had been affected.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1733
Author(s):  
Ru Zhang ◽  
Shi Quan Tan ◽  
Bian Ling Zhang ◽  
Zi Yu Guo ◽  
Liang Yu Tian ◽  
...  

α-l-arabinofuranosidase is a subfamily of glycosidases involved in the hydrolysis of l-arabinofuranosidic bonds, especially in those of the terminal non-reducing arabinofuranosyl residues of glycosides, from which efficient glycoside hydrolases can be screened for the transformation of ginsenosides. In this study, the ginsenoside Rc-hydrolyzing α-l-arabinofuranosidase gene, BsAbfA, was cloned from Bacilus subtilis, and its codons were optimized for efficient expression in E. coli BL21 (DE3). The recombinant protein BsAbfA fused with an N-terminal His-tag was overexpressed and purified, and then subjected to enzymatic characterization. Site-directed mutagenesis of BsAbfA was performed to verify the catalytic site, and the molecular mechanism of BsAbfA catalyzing ginsenoside Rc was analyzed by molecular docking, using the homology model of sequence alignment with other β-glycosidases. The results show that the purified BsAbfA had a specific activity of 32.6 U/mg. Under optimal conditions (pH 5, 40 °C), the kinetic parameters Km of BsAbfA for pNP-α-Araf and ginsenoside Rc were 0.6 mM and 0.4 mM, while the Kcat/Km were 181.5 s−1 mM−1 and 197.8 s−1 mM−1, respectively. More than 90% of ginsenoside Rc could be transformed by 12 U/mL purified BsAbfA at 40 °C and pH 5 in 24 h. The results of molecular docking and site-directed mutagenesis suggested that the E173 and E292 variants for BsAbfA are important in recognizing ginsenoside Rc effectively, and to make it enter the active pocket to hydrolyze the outer arabinofuranosyl moieties at C20 position. These remarkable properties and the catalytic mechanism of BsAbfA provide a good alternative for the effective biotransformation of the major ginsenoside Rc into Rd.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kengo Sasaki ◽  
Daisuke Sasaki ◽  
Katsunori Sasaki ◽  
Yuto Nishidono ◽  
Akihiro Yamamori ◽  
...  

AbstractDaikenchuto (DKT) is a Japanese traditional herbal (Kampo) medicine containing ginseng, processed ginger, and Japanese or Chinese pepper. We aimed to determine how DKT affects human colonic microbiota. An in vitro microbiota model was established using fecal inocula collected from nine healthy volunteers, and each model was found to retain operational taxonomic units similar to the ones in the original human fecal samples. DKT was added to the in vitro microbiota model culture at a concentration of 0.5% by weight. Next-generation sequencing of bacterial 16S rRNA gene revealed a significant increase in the relative abundance of bacteria related to the Bifidobacterium genus in the model after incubation with DKT. In pure cultures, DKT significantly promoted the growth of Bifidobacterium adolescentis, but not that of Fusobacterium nucleatum or Escherichia coli. Additionally, in pure cultures, B. adolescentis transformed ginsenoside Rc to Rd, which was then probably utilized for its growth. Our study reveals the in vitro bifidogenic effect of DKT that likely contributes to its beneficial effects on the human colon.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yaozhen Wang ◽  
Wenwen Fu ◽  
Yan Xue ◽  
Zeyuan Lu ◽  
Yuangeng Li ◽  
...  

Type 2 diabetes mellitus (T2DM) is a major health concern which may cause cardiovascular complications. Insulin resistance (IR), regarded as a hallmark of T2DM, is characterized by endothelial dysfunction. Ginsenoside Rc is one of the main protopanaxadiol-type saponins with relatively less research on it. Despite researches confirming the potent anti-inflammatory and antioxidant activities of ginsenoside Rc, the potential benefits of ginsenoside Rc against vascular complications have not been explored. In the present study, we investigated the effects of ginsenoside Rc on endothelial IR and endothelial dysfunction with its underlying mechanisms using high glucose- (HG-) cultured human umbilical vein endothelial cells (HUVECs) in vitro and a type 2 diabetic model of db/db mice in vivo. The results showed that ginsenoside Rc corrected the imbalance of vasomotor factors, reduced the production of Ang (angiotensin) II, and activated angiotensin-converting enzyme 2 (ACE2)/Ang-(1–7)/Mas axis in HG-treated HUVECs. Besides, ginsenoside Rc improved the impaired insulin signaling pathway and repressed oxidative stress and inflammatory pathways which constitute key factors leading to IR. Interestingly, the effects of ginsenoside Rc on HG-induced HUVECs were abolished by the selective ACE2 inhibitor MLN-4760. Furthermore, ginsenoside Rc exhibited anti-inflammatory as well as antioxidant properties and ameliorated endothelial dysfunction via upregulation of ACE2 in db/db mice, which were confirmed by the application of MLN-4760. In conclusion, our findings reveal a novel action of ginsenoside Rc and demonstrate that ginsenoside Rc ameliorated endothelial IR and endothelial dysfunction, at least in part, via upregulation of ACE2 and holds promise for the treatment of diabetic vascular complications.


2021 ◽  
Vol 143 (3) ◽  
pp. 1416-1427
Author(s):  
Qingxia Huang ◽  
Hang Su ◽  
Bin Qi ◽  
Ying Wang ◽  
Kaili Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document