One Nanometer PtIr Nanowires as High-Efficiency Bifunctional Catalysts for Electrosynthesis of Ethanol into High Value-Added Multicarbon Compound Coupled with Hydrogen Production

Author(s):  
Kun Yin ◽  
Yuguang Chao ◽  
Fan Lv ◽  
Lu Tao ◽  
Weiyu Zhang ◽  
...  
Author(s):  
Hanwen Xu ◽  
Jiawei Zhu ◽  
Pengyan Wang ◽  
Ding Chen ◽  
Chengtian Zhang ◽  
...  

Rational design and construction of high-efficiency bifunctional catalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for large-scale hydrogen production by water splitting. Herein, by a...


Nanoscale ◽  
2021 ◽  
Author(s):  
Dongxue Yao ◽  
Lingling Gu ◽  
Bin Zuo ◽  
Shuo Weng ◽  
Shengwei Deng ◽  
...  

The technology of electrolyzing water to prepare high-purity hydrogen is an important field in today's energy development. However, how to prepare efficient, stable, and inexpensive hydrogen production technology from electrolyzed...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ji-Yong Kim ◽  
Deokgi Hong ◽  
Jae-Chan Lee ◽  
Hyoung Gyun Kim ◽  
Sungwoo Lee ◽  
...  

AbstractFor steady electroconversion to value-added chemical products with high efficiency, electrocatalyst reconstruction during electrochemical reactions is a critical issue in catalyst design strategies. Here, we report a reconstruction-immunized catalyst system in which Cu nanoparticles are protected by a quasi-graphitic C shell. This C shell epitaxially grew on Cu with quasi-graphitic bonding via a gas–solid reaction governed by the CO (g) - CO2 (g) - C (s) equilibrium. The quasi-graphitic C shell-coated Cu was stable during the CO2 reduction reaction and provided a platform for rational material design. C2+ product selectivity could be additionally improved by doping p-block elements. These elements modulated the electronic structure of the Cu surface and its binding properties, which can affect the intermediate binding and CO dimerization barrier. B-modified Cu attained a 68.1% Faradaic efficiency for C2H4 at −0.55 V (vs RHE) and a C2H4 cathodic power conversion efficiency of 44.0%. In the case of N-modified Cu, an improved C2+ selectivity of 82.3% at a partial current density of 329.2 mA/cm2 was acquired. Quasi-graphitic C shells, which enable surface stabilization and inner element doping, can realize stable CO2-to-C2H4 conversion over 180 h and allow practical application of electrocatalysts for renewable energy conversion.


2021 ◽  
pp. 139124
Author(s):  
Xinyu Liu ◽  
Jing Xu ◽  
Lijun Ma ◽  
Ye Liu ◽  
Linying Hu

2019 ◽  
Vol 244 ◽  
pp. 529-535 ◽  
Author(s):  
Lulu Zhang ◽  
Hongwen Zhang ◽  
Bo Wang ◽  
Xueyan Huang ◽  
Yun Ye ◽  
...  

Author(s):  
Xianyun Peng ◽  
Yuying Mi ◽  
Xijun Liu ◽  
Jiaqiang Sun ◽  
Yuan Qiu ◽  
...  

Electrocatalytic hydrogen evolution is an efficient and economical technology to address environmental contamination and energy crises, but the development of such a sustainable hydrogen production system with high-efficiency and energy-saving...


2019 ◽  
Vol 21 (8) ◽  
pp. 4501-4512 ◽  
Author(s):  
Xian Yan ◽  
Zhiliang Jin ◽  
Yupeng Zhang ◽  
Hai Liu ◽  
Xiaoli Ma

In the present study, we have successfully synthesized a kind of high-efficiency NiCo2O4/CdS composite photocatalyst using the hydrothermal method and high-temperature calcination.


2020 ◽  
Vol 1012 ◽  
pp. 158-163
Author(s):  
Oliveira Marilei de Fátima ◽  
Mazur Viviane Teleginski ◽  
Virtuozo Fernanda ◽  
Junior Valter Anzolin de Souza

Nowadays, humanity has become aware of the consequences that the use of fossil fuels entails, and the latest developments in the energy sector are leading to a diversification of energy resources. In this context, researching on alternative forms of producing electric energy is being conducted. At the transportation level, a possible solution for this matter may lie in hydrogen fuel cells. The electrolysis of water is one of the possible processes for hydrogen production, but the reaction to break the water molecule requires a great amount of energy and this is precisely the biggest issue involving this process. In this work, low cost electrodes of 254 stainless steel and electrolytic graphite were used for hydrogen production, allowing high efficiency and reduced oxidation during the process. The selection of these materials allows to obtain a high corrosion resistance electrolytic pair, by replacing the high cost platinum electrode usually employed in the alkaline electrolysis process. The formic acid of biomass origin was used as an electrolyte. It was observed that the developed reactor have no energy losses through heat and it was possible to obtain approximately 82% conversion efficiency in the gas production process.


Sign in / Sign up

Export Citation Format

Share Document