scholarly journals Quasi-graphitic carbon shell-induced Cu confinement promotes electrocatalytic CO2 reduction toward C2+ products

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ji-Yong Kim ◽  
Deokgi Hong ◽  
Jae-Chan Lee ◽  
Hyoung Gyun Kim ◽  
Sungwoo Lee ◽  
...  

AbstractFor steady electroconversion to value-added chemical products with high efficiency, electrocatalyst reconstruction during electrochemical reactions is a critical issue in catalyst design strategies. Here, we report a reconstruction-immunized catalyst system in which Cu nanoparticles are protected by a quasi-graphitic C shell. This C shell epitaxially grew on Cu with quasi-graphitic bonding via a gas–solid reaction governed by the CO (g) - CO2 (g) - C (s) equilibrium. The quasi-graphitic C shell-coated Cu was stable during the CO2 reduction reaction and provided a platform for rational material design. C2+ product selectivity could be additionally improved by doping p-block elements. These elements modulated the electronic structure of the Cu surface and its binding properties, which can affect the intermediate binding and CO dimerization barrier. B-modified Cu attained a 68.1% Faradaic efficiency for C2H4 at −0.55 V (vs RHE) and a C2H4 cathodic power conversion efficiency of 44.0%. In the case of N-modified Cu, an improved C2+ selectivity of 82.3% at a partial current density of 329.2 mA/cm2 was acquired. Quasi-graphitic C shells, which enable surface stabilization and inner element doping, can realize stable CO2-to-C2H4 conversion over 180 h and allow practical application of electrocatalysts for renewable energy conversion.

Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3132 ◽  
Author(s):  
Robert Sacci ◽  
Stephanie Velardo ◽  
Lu Xiong ◽  
Daniel Lutterman ◽  
Joel Rosenthal

The ability to synthesize value-added chemicals directly from CO2 will be an important technological advancement for future generations. Using solar energy to drive thermodynamically uphill electrochemical reactions allows for near carbon-neutral processes that can convert CO2 into energy-rich carbon-based fuels. Here, we report on the use of inexpensive CuSn alloys to convert CO2 into CO in an acetonitrile/imidazolium-based electrolyte. Synergistic interactions between the CuSn catalyst and the imidazolium cation enables the electrocatalytic conversion of CO2 into CO at −1.65 V versus the standard calomel electrode (SCE). This catalyst system is characterized by overpotentials for CO2 reduction that are similar to more expensive Au- and Ag-based catalysts, and also shows that the efficacy of the CO2 reduction reaction can be tuned by varying the CuSn ratio.


2020 ◽  
Vol 8 (31) ◽  
pp. 15341-15357 ◽  
Author(s):  
Woong Choi ◽  
Da Hye Won ◽  
Yun Jeong Hwang

For practical applications, the deactivation processes of electrocatalysts in electrochemical CO2 reduction reactions have to be addressed by studying recent advances such as exclusion of metal impurity effect, periodic electrochemical activation and active nanocatalyst design.


Author(s):  
Rajasekaran Elakkiya ◽  
Govindhan Maduraiveeran

Design of high-performance and Earth-abundant electrocatalysts for electrochemical carbon dioxide (CO2) reduction reaction (CO2RR) into fuels and value-added chemicals offers an emergent pathway for environment and energy sustainable concerns. Herein,...


2021 ◽  
Author(s):  
M. Amin Farkhondehfal ◽  
Juqin Zeng

The CO2 that comes from the use of fossil fuels accounts for about 65% of the global greenhouse gas emission, and it plays a critical role in global climate changes. Among the different strategies that have been considered to address the storage and reutilization of CO2, the transformation of CO2 into chemicals and fuels with a high added-value has been considered a winning approach. This transformation is able to reduce the carbon emission and induce a “fuel switching” that exploits renewable energy sources. The aim of this chapter is to categorize different heterogeneous electrocatalysts which are being used for CO2 reduction, based on the desired products of the above mentioned reactions: from formic acid and carbon monoxide to methanol and ethanol and other possible by products. Moreover, a brief description of the kinetic and mechanism of the CO2 reduction reaction) and pathways toward different products have been discussed.


2016 ◽  
Vol 7 (5) ◽  
pp. 3364-3369 ◽  
Author(s):  
Kenichi Shimizu ◽  
Lior Sepunaru ◽  
Richard G. Compton

A bifunctional fuel cell catalyst system demonstrated herein overcomes the slow kinetics of the oxygen reduction reaction by rapid heterogeneous disproportionation of hydrogen peroxide.


2020 ◽  
Vol 10 (10) ◽  
pp. 3487 ◽  
Author(s):  
Changyeon Kim ◽  
Seokhoon Choi ◽  
Min-Ju Choi ◽  
Sol A Lee ◽  
Sang Hyun Ahn ◽  
...  

The photoelectrochemical reduction of CO2 to syngas that is used for many practical applications has been emerging as a promising technique to relieve the increase of CO2 in the atmosphere. Si has been considered to be one of the most promising materials for photoelectrodes, but the integration of electrocatalysts is essential for the photoelectrochemical reduction of CO2 using Si. We report an enhancement of catalytic activity for CO2 reduction reaction by Ag catalysts of tuned morphology, active sites, and electronic structure through reducing anodic treatment. Our proposed photocathode structure, a SiO2 patterned p-Si photocathode with these reduced Ag catalysts, that was fabricated using electron-beam deposition and electrodeposition methods, provides a low onset-potential of −0.16 V vs. the reversible hydrogen electrode (RHE), a large saturated photocurrent density of −9 mA/cm2 at −1.23 V vs. RHE, and faradaic efficiency for CO of 47% at −0.6 V vs. RHE. This photocathode can produce syngas in the ratio from 1:1 to 1:3, which is an appropriate proportion for practical application. This work presents a new approach for designing photocathodes with a balanced catalytic activity and light absorption to improve the photoelectrochemical application for not only CO2 reduction reaction, but also water splitting or N2 reduction reaction.


Author(s):  
Min Zhang ◽  
Wenbo Wei ◽  
Shenghua Zhou ◽  
Dong-Dong Ma ◽  
Aihui Cao ◽  
...  

Electrochemical CO2 reduction reaction (CO2RR) to value-added and readily collectable liquid products is promising but remains a great challenge due to the lack of efficient and robust electrocatalysts. Herein, a...


Author(s):  
Bianca M. Ceballos ◽  
Ghanshyam Pilania ◽  
Kannan P. Ramaiyan ◽  
Amitava Banerjee ◽  
Cortney Kreller ◽  
...  

Author(s):  
Shuzhen Zhang ◽  
Celia Chen ◽  
Kangkang Li ◽  
Hai Yu ◽  
Fengwang Li

Electrochemical CO2 reduction reaction (eCO2RR) has been regarded as a promising means to store renewable electricity in the form of value-added chemicals or fuels. However, most of present eCO2RR studies...


2018 ◽  
Vol 20 (16) ◽  
pp. 3657-3682 ◽  
Author(s):  
Xiao Kong ◽  
Yifeng Zhu ◽  
Zhen Fang ◽  
Janusz A. Kozinski ◽  
Ian S. Butler ◽  
...  

The catalytic mechanisms and catalyst design strategies for 5-hydroxymethylfural conversion are summarized.


Sign in / Sign up

Export Citation Format

Share Document