Toward Homogenization of Heterogeneous Metal Nanoparticle Catalysts with Enhanced Catalytic Performance: Soluble Porous Organic Cage as a Stabilizer and Homogenizer

2015 ◽  
Vol 137 (22) ◽  
pp. 7063-7066 ◽  
Author(s):  
Jian-Ke Sun ◽  
Wen-Wen Zhan ◽  
Tomoki Akita ◽  
Qiang Xu
2021 ◽  
Author(s):  
Yukui Fu ◽  
Cui Lai ◽  
Wenjing Chen ◽  
Huan Yi ◽  
Xigui Liu ◽  
...  

Abstract Gold (Au) nanoparticles supported on certain platforms display highly efficient activity on nitroaromatics reduction. In this study, steam-activated carbon black (SCB) was used as a platform to fabricate Au/SCB catalysts via a green and simple method for 4-nitrophenol (4-NP) reduction. The obtained Au/SCB catalysts exhibit efficient catalytic performance in reduction of 4-NP (rate constant kapp = 2.1925 min-1). The effects of SCB activated under different steam temperature, Au loading amount, pH and reaction temperature were studied. The structural advantages of SCB as a platform were analyzed by various characterizations. Especially, the result of N2 adsorption-desorption method showed that steam activating process could bring higher surface area (from 185.9689 m²/g to 249.0053 m²/g), larger pore volume (from 0.073268 cm³/g to 0.165246 cm³/g) and more micropore for SCB when compared with initial CB, demonstrating the suitable of SCB for Au NPs anchoring, thus promoting the catalytic activity. This work contributes to the fabrication of other supported metal nanoparticle catalysts for preparing different functional nanocomposites for different applications.


Author(s):  
Joakim Tafjord ◽  
Erling Rytter ◽  
Anders Holmen ◽  
Rune Myrstad ◽  
Ingeborg-Helene Svenum ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaowen Chen ◽  
Mi Peng ◽  
Xiangbin Cai ◽  
Yunlei Chen ◽  
Zhimin Jia ◽  
...  

AbstractMetal nanoparticle (NP), cluster and isolated metal atom (or single atom, SA) exhibit different catalytic performance in heterogeneous catalysis originating from their distinct nanostructures. To maximize atom efficiency and boost activity for catalysis, the construction of structure–performance relationship provides an effective way at the atomic level. Here, we successfully fabricate fully exposed Pt3 clusters on the defective nanodiamond@graphene (ND@G) by the assistance of atomically dispersed Sn promoters, and correlated the n-butane direct dehydrogenation (DDH) activity with the average coordination number (CN) of Pt-Pt bond in Pt NP, Pt3 cluster and Pt SA for fundamentally understanding structure (especially the sub-nano structure) effects on n-butane DDH reaction at the atomic level. The as-prepared fully exposed Pt3 cluster catalyst shows higher conversion (35.4%) and remarkable alkene selectivity (99.0%) for n-butane direct DDH reaction at 450 °C, compared to typical Pt NP and Pt SA catalysts supported on ND@G. Density functional theory calculation (DFT) reveal that the fully exposed Pt3 clusters possess favorable dehydrogenation activation barrier of n-butane and reasonable desorption barrier of butene in the DDH reaction.


2015 ◽  
Vol 112 (52) ◽  
pp. 15809-15814 ◽  
Author(s):  
Sheng Zhang ◽  
Peng Kang ◽  
Mohammed Bakir ◽  
Alexander M. Lapides ◽  
Christopher J. Dares ◽  
...  

Developing sustainable energy strategies based on CO2 reduction is an increasingly important issue given the world’s continued reliance on hydrocarbon fuels and the rise in CO2 concentrations in the atmosphere. An important option is electrochemical or photoelectrochemical CO2 reduction to carbon fuels. We describe here an electrodeposition strategy for preparing highly dispersed, ultrafine metal nanoparticle catalysts on an electroactive polymeric film including nanoalloys of Cu and Pd. Compared with nanoCu catalysts, which are state-of-the-art catalysts for CO2 reduction to hydrocarbons, the bimetallic CuPd nanoalloy catalyst exhibits a greater than twofold enhancement in Faradaic efficiency for CO2 reduction to methane. The origin of the enhancement is suggested to arise from a synergistic reactivity interplay between Pd–H sites and Cu–CO sites during electrochemical CO2 reduction. The polymer substrate also appears to provide a basis for the local concentration of CO2 resulting in the enhancement of catalytic current densities by threefold. The procedure for preparation of the nanoalloy catalyst is straightforward and appears to be generally applicable to the preparation of catalytic electrodes for incorporation into electrolysis devices.


Author(s):  
Hangyu Liu ◽  
Liyu Chen ◽  
Chun-Chao Hou ◽  
Yong-Sheng Wei ◽  
Qiang Xu

Metal nanoparticles are encapsulated within soluble porous carbon cages by a silica-shelled metal–organic framework pyrolysis approach. The catalyst shows high catalytic activities for hydrogen peroxide decomposition and ammonia borane hydrolysis.


2020 ◽  
Vol 1 (6) ◽  
pp. 1952-1962
Author(s):  
Samikannu Prabu ◽  
Kung-Yuh Chiang

GO and rGO supported metal NPs exhibited excellent catalytic performance for AB hydrolysis. It also provided a high turnover frequency (TOF) at 25 °C.


Sign in / Sign up

Export Citation Format

Share Document