Solubility of Solid Polycyclic Aromatic Hydrocarbons in Pressurized Hot Water at Temperatures from 313 K to the Melting Point

2006 ◽  
Vol 51 (2) ◽  
pp. 616-622 ◽  
Author(s):  
Pavel Karásek ◽  
Josef Planeta ◽  
Michal Roth
Author(s):  
A Rodgman ◽  
LC Cook

AbstractBecause of the significant advancements in fractionation, analytical, and characterization technologies since the early 1960s, hundreds of components of complex mixtures have been accurately characterized without the necessity of actually isolating the individual component. This has been particularly true in the case of the complex mixtures tobacco and tobacco smoke. Herein, an historical account of a mid-1950 situation concerning polycyclic aromatic hydrocarbons (PAHs) in cigarette smoke is presented. While the number of PAHs identified in tobacco smoke has escalated from the initial PAH, azulene, identified in 1947 to almost 100 PAHs identified by late 1963 to more than 500 PAHs identified by the late 1970s, the number of PAHs isolated individually and characterized by several of the so-called classical chemical means (melting point, mixture melting point, derivative preparation and properties) in the mid-1950s and since is relatively few, 14 in all. They were among 44 PAHs identified in cigarette mainstream smoke and included the following PAHs ranging from bicyclic to pentacyclic: Acenaphthylene, 1,2-dihydroacenaphthylene, anthracene, benz[a]anthracene, benzo[a]pyrene, chrysene, dibenz[a, h]anthracene, fluoranthene, 9H-fluorene, naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, phenanthrene, and pyrene. One of them, benzo[a]pyrene, was similarly characterized in another study in 1959 by Hoffmann.


The Analyst ◽  
2003 ◽  
Vol 128 (2) ◽  
pp. 150-155 ◽  
Author(s):  
Terhi Andersson ◽  
Kari Hartonen ◽  
Tuulia Hyötyläinen ◽  
Marja-Liisa Riekkola

Author(s):  
P. Knigawka ◽  
P. Pianko-Oprych ◽  
K. Krpec ◽  
L. Kuboňová

AbstractThe objective of this work was to evaluate the relationship between the fuel quality and the gaseous and particulate pollutant emissions generated from a hot-water boiler during the combustion of different types of innovative processed fuels: smokeless coal, smokeless briquettes 1–3, smokeless pellets and unprocessed hard coal. The aim of our research was to prove the presumption that smokeless processed coals produce less gaseous and particulate emissions. By using modern fuels in already used and manufactured older boilers, there is a possibility to significantly reduce emissions of organic gaseous compounds (OGC) and polycyclic aromatic hydrocarbons (PAHs). The emission situation in the heating season can be significantly improved even without costly production, and thus consumption of natural resources and energy, and installation of modern boilers. Physical and chemical characterization of solid-fuel samples, including determination of moisture content, ash, volatile organic content, calorific value and elemental composition analysis, were performed. Fuels were burned in one type of hot-water boiler class 1 according to EN 303-5 to determine the impact of applied fuel types on pollutant emissions. The pollutant emissions were characterized by the contents of gaseous components: nitrogen oxides NOx, sulfur dioxide SO2, carbon monoxide CO, carbon dioxide CO2, organic gaseous compounds OGC and particle components: total suspended particles TSP, particulate matter less than 2.5 µm and 10 µm (PM2.5 and PM10, respectively) and polycyclic aromatic hydrocarbons PAHs in both phases. The emission factors from six types of fuel were compared with applicable European standards. The lowest NOx content was observed for smokeless briquette 1, while the lowest SO2 content was observed for smokeless pellets. The emission of CO was at a similarly low level of 200 g/kg for smokeless briquette 1, smokeless briquette 2 and hard coal. Gaseous and pollutant emissions described by PM2.5 and TSP were observed to be the lowest for smokeless coal, smokeless briquette 1 and smokeless briquette 2.


Sign in / Sign up

Export Citation Format

Share Document