scholarly journals In Vitro Digestion Rate and Estimated Glycemic Index of Oat Flours from Typical and High β-Glucan Oat Lines

2012 ◽  
Vol 60 (20) ◽  
pp. 5237-5242 ◽  
Author(s):  
Hyun Jung Kim ◽  
Pamela J. White
Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 514
Author(s):  
Hilal Demirkesen-Bicak ◽  
Muhammet Arici ◽  
Mustafa Yaman ◽  
Salih Karasu ◽  
Osman Sagdic

This study aimed to evaluate the influence of sourdough fermentation on the estimated glycemic index (eGI), in vitro starch digestibility, and textural and sensory properties of eight experimentally prepared sourdough breads. Wheat and whole wheat flour bread samples were produced under different fermentation conditions (25 °C and 30 °C) and fermentation methods (type-1 and type-2). In type-1 fermentation, sourdough was obtained via spontaneous fermentation. Indigenous strains (Lactobacillus brevis ELB99, Lactiplantibacillus plantarum ELB75, and Saccharomyces cerevisiae TGM55) were used for type-2 fermentation. Fermentation type and temperature significantly affected eGI, the hydrolysis index (HI), the starch fraction, and the textural properties of the samples (p < 0.05). The resistant starch (RS) content increased after fermentation, while rapidly digestible starch (RDS), HI, and eGI decreased. RS values were significantly higher in type-2 than in type-1 at the same temperature for both flour types (p < 0.05). At 25 °C, RS values were higher in both fermentation types. In the white flour samples, eGI values were in the range of 60.8–78.94 and 62.10–78.94 for type-1 and type-2, respectively. The effect of fermentation type on eGI was insignificant (p < 0.05). In the whole flour samples, fermentation type and temperature significantly affected eGI (p < 0.05). The greatest eGI decreases were in whole wheat sourdough bread at 30 °C using type-2 (29.74%). The 30 °C and type-2 samples showed lower hardness and higher specific volume. This study suggests that fermentation type and temperature could affect the eGI and the textural and sensory properties of sourdough bread, and these factors should be considered during bread production. The findings also support the consumption of wheat and whole wheat breads produced by type-2 fermentation due to higher RS and slowly digestible starch (SDS) and lower RDS and eGI values.


2019 ◽  
Vol 57 (4) ◽  
pp. 1393-1404 ◽  
Author(s):  
Jean-M. Fernandes ◽  
Daniel A. Madalena ◽  
Ana C. Pinheiro ◽  
António A. Vicente

2021 ◽  
Author(s):  
Yesudas Gudivada

While in vivo methods have been used to determine the glycemic response of food, they are time consuming, costly, and not suitable for large-scale applications. As an alternative, in vitro digestion models offer fast, reproducible results to study food digestion kinetics that are less expensive than conducting human trials. While there are several in vitro glycemic index (GI) methods used to determine the GI of food, most do not employ methods of in vivo testing. Therefore, we used a static in vitro digestive system, the Dedicated Ryerson University In-vitro Digester (DRUID), that simulates both gastric and intestinal conditions to determine the glycemic response of commonly consumed carbohydrate-containing foods. Samples were collected at regular intervals over a 2h residence time after digestion in the intestinal phase of the DRUID. The DRUID-determined GI values were compared to published in vivo GI values. A Bland-Altman plot showed that there was agreement between the GI values determined from the DRUID compared with published in vivo GI values. In conclusion, the in vitro DRUID can reliably and reproducibly determine the GI across a spectrum of carbohydrate-containing foods, and has the potential to predict the digestion kinetics of novel food products in vivo that may promote human health.


Sign in / Sign up

Export Citation Format

Share Document