In vitro starch hydrolysis and estimated glycemic index of tef porridge and injera

2017 ◽  
Vol 229 ◽  
pp. 381-387 ◽  
Author(s):  
Habtu Shumoy ◽  
Katleen Raes
Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 514
Author(s):  
Hilal Demirkesen-Bicak ◽  
Muhammet Arici ◽  
Mustafa Yaman ◽  
Salih Karasu ◽  
Osman Sagdic

This study aimed to evaluate the influence of sourdough fermentation on the estimated glycemic index (eGI), in vitro starch digestibility, and textural and sensory properties of eight experimentally prepared sourdough breads. Wheat and whole wheat flour bread samples were produced under different fermentation conditions (25 °C and 30 °C) and fermentation methods (type-1 and type-2). In type-1 fermentation, sourdough was obtained via spontaneous fermentation. Indigenous strains (Lactobacillus brevis ELB99, Lactiplantibacillus plantarum ELB75, and Saccharomyces cerevisiae TGM55) were used for type-2 fermentation. Fermentation type and temperature significantly affected eGI, the hydrolysis index (HI), the starch fraction, and the textural properties of the samples (p < 0.05). The resistant starch (RS) content increased after fermentation, while rapidly digestible starch (RDS), HI, and eGI decreased. RS values were significantly higher in type-2 than in type-1 at the same temperature for both flour types (p < 0.05). At 25 °C, RS values were higher in both fermentation types. In the white flour samples, eGI values were in the range of 60.8–78.94 and 62.10–78.94 for type-1 and type-2, respectively. The effect of fermentation type on eGI was insignificant (p < 0.05). In the whole flour samples, fermentation type and temperature significantly affected eGI (p < 0.05). The greatest eGI decreases were in whole wheat sourdough bread at 30 °C using type-2 (29.74%). The 30 °C and type-2 samples showed lower hardness and higher specific volume. This study suggests that fermentation type and temperature could affect the eGI and the textural and sensory properties of sourdough bread, and these factors should be considered during bread production. The findings also support the consumption of wheat and whole wheat breads produced by type-2 fermentation due to higher RS and slowly digestible starch (SDS) and lower RDS and eGI values.


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 101
Author(s):  
Cristiana Pereira ◽  
Regina Menezes ◽  
Vanda Lourenço ◽  
Teresa Serra ◽  
Carla Brites

Rice consumed as white cooked polished grain has been considered a high glycemic index (GI) food, particularly compared with other starchy foods. However, the GI levels of rice based food can vary among different rice types and food processing technologies. Rice GI variation can be affected by several factors, such as rice variety, the genetic background of rice as well as due to crop edaphoclimatic conditions. The main difference in rice starch composition that influences GI is the amylose content. Besides the chemical composition of rice, the gelatinization characteristics and food processing can also contribute to starch retrogradation, thus increasing the level of resistant starch with a great influence on GI. To understand the glycemic response of rice types differing in amylose and viscosity profiles, four rice samples were analyzed and compared with standard and resistant HI-MAIZE corn starches. An in vitro enzymatic starch hydrolysis procedure was applied to estimate GI. The results indicate substantial differences in the starch hydrolysis of the two corn starches. Starch hydrolysis tended to be more rapid and efficient for ‘Waxy’ and ‘Ceres’ (intermediate-amylose) rice types than for ‘Maçarico’ (high-amylose rice). In addition, the data show that the Maçarico variety has the lowest estimated GI and the highest retrogradation rate compared with ‘Waxy’, ‘Ceres’ and ‘Basmati’ type. The results obtained reinforce the importance of knowing amylose content and viscosity profiles for the prediction of rice glycemic responses.


2016 ◽  
Vol 5 (2) ◽  
pp. 73 ◽  
Author(s):  
Kiin-Kabari David Barine ◽  
Giami Sunday Yorte

<p>Various levels of bambara groundnut protein cocnentrate ranging from 0 to 15% were used in the formulation of plantain paste (Amala) and plantain baked products. ‘Amala’ and cookies were produced from 85% plantain flour and 15% bamabara groundnut protein concentrate, while cakes and bread were produced from 70% wheat flour, 20% plantain flour and 10% bambara groundnut protein concentrate. Starch fractions and <em>in vitro</em> starch hydrolysis of the products were determined. The lowest total starch value was found in plantain flour (51.51%) and highest in cakes (70.62%). There was no significant difference in resistant starch between plantain flour and ‘amala’ (5.22% and 4.99%, respectively). The lowest resistant starch was observed in bread (0.94%), while digestible starch was higher in bread and cakes compared to plantain flour. Higher total starch also resulted in higher digestible starch. The kinetic constant of plantain products showed very low values suggesting generally, higher resistance to enzymatic hydrolysis. The highest hydrolysis index (HI) of 74.85%, and 74.25% were observed in cakes and bread, respectively; which also resulted in higher predicted glycemic index (PGI) of 80.79% (Cakes) and 80.45% (Bread). These values were significantly different from that obtained for ‘amala’ with H1 of 56.40% with a corresponding PGI of 70.67% while cookies recorded HI value of 62.64% and PGI of 74.10%. The lowest HI (53.98%) and PGI (69.35%) was observed in plantain flour. This study showed that the more plantain flour in the product formualtions, the lower the hydrolysis index (HI) and the predicted glycemic index (PGI).</p>


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2105 ◽  
Author(s):  
Aleixandre ◽  
Benavent-Gil ◽  
Rosell

The growing interest in controlling the glycemic index of starchy-rich food has encouraged research about the role of the physical structure of food. The aim of this research was to understand the impact of the structure and the in vitro oral processing methods on bolus behavior and starch hydrolysis of wheat bread. Two different bread structures (loaf bread and bread roll) were obtained using different shaping methods. Starch hydrolysis during in vitro oro-gastro-intestinal digestion using the INFOGEST protocol was analyzed and oral processing was simulated by applying two different disintegration processes (basic homogenizer, crystal balls). The bread structure, and thus the shaping method during breadmaking, significantly affected the bolus particle size during all digestion stages. The different in vitro oral processing methods affected the bolus particle sizes after the oral phase in both breads, but they affected the particle size distribution after the gastric and intestinal phase only in the case of loaf bread. Aggregates were observed in the gastric phase, which were significantly reduced in the intestinal phase. When simulated oral processing with crystal balls led to bigger particle size distribution, bread rolls presented the highest in vitro starch hydrolysis. The type of in vitro oral processing allowed discrimination of the performance of the structures of the two breads during starch hydrolysis. Overall, crumb structure significantly affected texture properties, but also had a significant impact on particle size during digestion and starch digestibility.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 571-571
Author(s):  
Norah Alshammari ◽  
Syahrizal Muttakin ◽  
Qingsu Liu ◽  
Ourania Gouseti ◽  
Jaber Alyami ◽  
...  

Abstract Objectives High consumption of starchy foods has been linked to increased risk of type 2 diabetes. Addition of food hydrocolloids gums to food has previously been shown to reduce the digestibility of food. Gellan gum, a polysacchairde produced by sphingomonas eldea is one of many available food hydrocolloid gums. The aim of the present study was to examine the effect of adding gellan gum to white rice during cooking on the starch digestibility and related in-vitro glycemic index(GI). Methods A static in-vitro digestion model was used based on the protocol from the INFOGEST static in-vitro simulation of gastrointestinal food digestion model (Brodkorb et al, .2019). Four different samples were prepared: (A) Cooked Jasmine rice; (B) Cooked Jasmine rice + 1% low acyl gellan gum, LAGG (KELCOGEL F, CPKelco); (C) Cooked long grain rice and (D) Cooked long grain rice + 1% LAGG. The oral phase was simulated by adding 5 ml of simulated salivary fluid containing human salivary amylase, followed by gastric phase and an intestinal phase. Glucose release was determined by Sugar Reduction Assay(PAHBAH) and compared to a maltose standard curve at consecutive time points for 2 hours. Results The addition of LAGG inhibited starch hydrolysis for both Jasmine and long grain rice. The greatest effect was observed for Jasmine rice. Starch digestion was reduced with the addition of LAGG to Jasmine rice by 27% and with the addition to long grain rice by 21% at 120 minutes. The GI was calculated using the area under curve and white bread as reference. The addition of LAGG to Jasmine rice reduced the GI value by 8% whilst the effect on long grain rice was less pronounced. Conclusions The addition of gellan gum to rice during cooking reduced starch digestion in white rice and the in-vitro glycemic index. This might be an effective way to reduce the glycemic response to starchy foods in human. Funding Sources Ministry of Education, Saudi Arabia Acknowledgment: We thank Neil Cruttenden at CPKelco for the kind gift of gellan gum.


Sign in / Sign up

Export Citation Format

Share Document