scholarly journals Effect of Different Fermentation Condition on Estimated Glycemic Index, In Vitro Starch Digestibility, and Textural and Sensory Properties of Sourdough Bread

Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 514
Author(s):  
Hilal Demirkesen-Bicak ◽  
Muhammet Arici ◽  
Mustafa Yaman ◽  
Salih Karasu ◽  
Osman Sagdic

This study aimed to evaluate the influence of sourdough fermentation on the estimated glycemic index (eGI), in vitro starch digestibility, and textural and sensory properties of eight experimentally prepared sourdough breads. Wheat and whole wheat flour bread samples were produced under different fermentation conditions (25 °C and 30 °C) and fermentation methods (type-1 and type-2). In type-1 fermentation, sourdough was obtained via spontaneous fermentation. Indigenous strains (Lactobacillus brevis ELB99, Lactiplantibacillus plantarum ELB75, and Saccharomyces cerevisiae TGM55) were used for type-2 fermentation. Fermentation type and temperature significantly affected eGI, the hydrolysis index (HI), the starch fraction, and the textural properties of the samples (p < 0.05). The resistant starch (RS) content increased after fermentation, while rapidly digestible starch (RDS), HI, and eGI decreased. RS values were significantly higher in type-2 than in type-1 at the same temperature for both flour types (p < 0.05). At 25 °C, RS values were higher in both fermentation types. In the white flour samples, eGI values were in the range of 60.8–78.94 and 62.10–78.94 for type-1 and type-2, respectively. The effect of fermentation type on eGI was insignificant (p < 0.05). In the whole flour samples, fermentation type and temperature significantly affected eGI (p < 0.05). The greatest eGI decreases were in whole wheat sourdough bread at 30 °C using type-2 (29.74%). The 30 °C and type-2 samples showed lower hardness and higher specific volume. This study suggests that fermentation type and temperature could affect the eGI and the textural and sensory properties of sourdough bread, and these factors should be considered during bread production. The findings also support the consumption of wheat and whole wheat breads produced by type-2 fermentation due to higher RS and slowly digestible starch (SDS) and lower RDS and eGI values.

Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1685
Author(s):  
Feiyue Ren ◽  
Xiaoxue Yang ◽  
Lili Wang ◽  
Sumei Zhou

The estimated glycemic index (eGI) value of adzuki bean powder prepared by steamed cooking (SC), extruded cooking (EC) and roller cooking (RC) was studied comparatively. Results showed that RC had the highest eGI, with 80.1, and both EC and SC resulted in a lower eGI value of 70.0 and 49.7, respectively. Compared with the EC and RC methods, the SC method provided a more intact physical barrier for starch digestion, resulting in a less destroyed cell structure. As the essential components that form the cell wall, the study further investigated the effects of protein and fiber on physicochemical properties, in vitro starch digestibility and the eGI of adzuki bean powder processed with the SC method. Viscozyme and Protamax were used to obtain the deprotein and defiber samples. Results showed that the SC treatment with Viscozyme and Protamax, respectively, had significant effects on in vitro starch digestibility. The eGI of different samples were given as follows: steamed cooking adzuki bean powder (49.7) < deproteined adzuki bean powder (60.5) < defibered adzuki bean powder (83.1), which indicates that fiber may have a greater influence on the eGI than protein.


Sign in / Sign up

Export Citation Format

Share Document