Discovery of an Orally Bioavailable Small Molecule Inhibitor of Prosurvival B-Cell Lymphoma 2 Proteins

2008 ◽  
Vol 51 (21) ◽  
pp. 6902-6915 ◽  
Author(s):  
Cheol-Min Park ◽  
Milan Bruncko ◽  
Jessica Adickes ◽  
Joy Bauch ◽  
Hong Ding ◽  
...  
Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4521-4521
Author(s):  
Ramzi M. Mohammad ◽  
Yuan Sun ◽  
Shaomeng Wang ◽  
Amro Aboukameel ◽  
Ayad M. Al-Katib

Abstract Non-Hodgkin’s lymphoma (NHL) tumors include a group of heterogeneous diseases with varying natural histories and responsiveness to therapy; nonetheless, overexpression of Bcl-2 protein is seen in more than 80% of NHL. Throughout the years our laboratory succeeded in establishing a panel of B-cell lines representing various maturational stages of NHL. In this study, we have utilized a structure-based strategy to design a new class of potent nonpeptidic small-molecule inhibitor (SMI) of Bcl-2 family. TW-37, a lead compound that was designed to target the BH3 binding groove of antiapopototic Bcl-2 proteins. It binds to Bcl-2, Bcl-XL and Mcl-1 with Ki values of 290 nM, 1110 nM and 260 nM, respectively. TW-37 showed significant antiproliferative effect against Pre-B-Acute Lymphoblastic Leukemia (WSU-pre-B-ALL), Diffuse Large Cell Lymphoma (WSU-DLCL2), Follicular Small Cleaved Cell Lymphoma (WSU-FSCCL), Waldenstrom’s Macroglobulinemia (WSU-WM) and primary cells obtained from lymphoma patients, despite variations in their anti- and pro-apoptotic Bcl-2 proteins (Bcl-2, Bcl-XL, Mcl-1, Bax, Bak, Bim, Bad, BUMA and Bok). The IC50 for TW-37 varied from 165 nM in the WSU-FSCCL to 300 nM in WSU-DLCL2 cells. Apoptosis was independent of proliferative status or pathological classification of B-cell tumor. TW-37 was able to block Bim-Bcl-XL and Bim-Mcl-1 eterodimerization and induces apoptosis via activation of caspases -9, -3, PARP and DNA fragmentation. Although cell lines and patient samples expressed multiple Bcl-2 family proteins at various levels, TW-37 induced apoptosis was only strongly associated with Bax:Mcl-1 ratio. TW-37 administered to tumor-bearing SCID mice led to significant tumor growth inhibition (T/C), tumor growth delay (T-C) and Log10kill, when used at its maximum tolerated dose (40 mg/kg x 3days) via tail vein. failed to induce changes in the Bcl-2 proteins levels suggests that assessment of baseline Bcl-2 family proteins can be used to prognosticate the response to drug. These findings indicate activity of TW-37 across the spectrum of human B-cell tumors and support the concept of targeting the Bcl-2 system as a therapeutic strategy in the treatment of B-cell lymphoma.


RSC Advances ◽  
2016 ◽  
Vol 6 (34) ◽  
pp. 28512-28521 ◽  
Author(s):  
Tiantao Gao ◽  
Lidan Zhang ◽  
Yongxia Zhu ◽  
Xuejiao Song ◽  
Qiang Feng ◽  
...  

Here, we reported a novel, selective, small-molecule inhibitor of EZH2 and EZH1 synthesized by us, ZLD1122, which inhibited both EZH1 and wild type and mutant EZH2 activities with nanomolar potency.


2015 ◽  
Vol 137 (38) ◽  
pp. 12249-12260 ◽  
Author(s):  
Logan R. Hoggard ◽  
Yongqiang Zhang ◽  
Min Zhang ◽  
Vanja Panic ◽  
John A. Wisniewski ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1692-1692 ◽  
Author(s):  
Daniela Buglio ◽  
Sangeetha Palakurthi ◽  
Katharine F. Byth ◽  
Anas Younes

Abstract Abstract 1692 Poster Board I-718 Transforming growth factor-b-activated kinase 1 (TAK1) is a key regulator of NF-kB activation. TAK1 can be activated by a variety of pro-inflammatory cytokines and T and B cell receptors. Recent experiments demonstrated that deletion of TAK1 results in inactivation of both JNK and NF-kB signaling resulting in massive apoptotic death of hematopoietic cells in mice. In this study, we examined the expression pattern of TAK1 and its role as a potential therapeutic target for lymphoma. First, we examined TAK1 expression in a panel of lymphoid cell lines by western blot, and found it to be highly expressed in mantle cell lymphoma cell lines (Mino, SP53, and Jeko-1). These lines expressed relatively low levels of the tumor suppressor protein A20. Mino and SP53 expressed high level of p-p38. Subsequently, we investigated the in vitro activity of the novel TAK1 small molecule inhibitor AZ-Tak1 in these cell lines. AZ-Tak1 is a potent and a relatively selective inhibitor of TAK1 kinase activity, with an IC50 of 0.009 mM. It also inhibits Jak2 but at a much higher concentration (IC50=0.18 mM). AZ-Tak1 treatment decreased the level of p38 and ERK in mantle cell lymphoma cells, and induced apoptosis in a dose and time dependent manner, with an IC50 of 0.1-0.5 mM. Using the annexin-V and PI staining and FACS analysis, After 48 hours of incubation, AZ-Tak1 (0.1 mM) induced apoptosis in 28%, 34% and 86% of Mino, SP53, and Jeko cells, respectively, which was increased to 32%, 42%, and 86% when 0.5 mM concentration was used. Similar activity was also observed when primary mantle cell lymphoma cells were examined. Using pathway-specific protein arrays focusing on apoptosis, kinases, and transcription factors, AZ-Tak1 (0.5 mM) altered the level of several proteins that regulate cell growth and survival, especially members of the inhibitors of apoptosis (IAP) family. Specifically, AZ-Tak1 decreased the level of SMAC/DIABOLO and cytochrome –C in the mitochondria, which was associated with a decrease in the level of the anti-apoptotic protein X-linked IAP (XIAP) and activation of the intrinsic apoptotic pathway as evident by activation of caspase 9, cleavage of caspase 3, and induction of apoptosis. Furthermore, and consistant with its ability to inhibit Jak2 activity, AZ-Tak1 reduced STAT2 and STAT6 levels. AZ-Tak1 demonstrated no significant effect on bcl-2 family members. Finally, co-treatment with HDAC inhibitors demonstrated synergistic effect with low concentrations of AZ-Tak1. Collectively, our data demonstrate that targeting TAK1 by the small molecule inhibitor AZ-Tak1 induces cell death in mantle cell lymphoma by activating the intrinsic apoptosis pathway, suggesting that targeting TAK1 may have a therapeutic value for the treatment of mantle cell lymphoma. Disclosures Palakurthi: Astra Zeneca: Employment. Byth:Astra Zeneca : Employment.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 606-606
Author(s):  
Michael Milhollen ◽  
Usha Narayanan ◽  
Allison J Berger ◽  
Michael Thomas ◽  
Tary Traore ◽  
...  

Abstract MLN4924 is a first-in-class, small molecule inhibitor of the Nedd8 Activating Enzyme (NAE) in Phase I clinical trials in hematological malignancies. Inhibition of NAE by MLN4924 leads to decreased neddylation and inhibition of cullin-dependent ubiquitin ligase (CDL) activity. CDLs are enzyme complexes which control the ubiquitination and degradation of proteins with important roles in cell cycle progression and cell survival. CDL-mediated degradation of pIkBa regulates NF-kB signaling by freeing cytoplasmic NF-kB transcription factors to translocate to the nucleus promoting cell proliferation and survival. In tumors dependent on the NF-kB pathway for growth and survival, we hypothesized that MLN4924 inhibition of CDL activity would prevent pIkBa degradation and inhibit NF-kB signaling. We utilized models of ABC-like Diffuse Large B-cell Lymphoma (ABC-like DLBCL, OCI-Ly10 and OCI-Ly3 cells) dependent on NF-kB signaling for survival and Germinal Center B-cell like DLBCL (GCB-like DLBCL, OCI-Ly19 and OCI-Ly7 cells) that are not dependent on NF-kB signaling for survival. In vitro, we show that NAE inhibition by MLN4924 in ABC-like DLBCL produces marked stabilization of pIkBa, inhibits p65 nuclear translocation and NF-KB gene transcription demonstrating an inhibition of NF-kB signaling. The inhibition of NF-KB signaling in Ly10 cells results in a G1 phenotype and an acute induction of apoptosis. In contrast, in GCB-like DLBCL we observed an elevation of multiple substrates of the CDLs, an accumulation of cells with increased DNA content (>4N) followed by a DNA damage response and induction of cell death. This mechanism of action in GCB-like DLBCL cells is observed in other tumor cell lines that are not dependent on NF-kB signaling for survival. In vivo administration of MLN4924 to mice bearing xenograft tumors of OCI-Ly10 and OCI-Ly19 resulted in a pharmacodynamic response of NAE pathway inhibition. In both models, a single dose of MLN4924 resulted in time and dose-dependent inhibition of total neddylated cullin levels and stabilization of CDL substrates including the CDL3Keap1 substrate, Nrf-2. Notably, in the OCI-Ly10 model, a single dose of MLN4924 resulted in a marked elevation of pIkBa levels, indicative of NF-kB pathway inhibition, and induction of apoptosis. In both OCI-Ly10 and OCI-Ly19 xenograft models, inhibition of the NAE pathway following repeated daily and intermittent dosing of MLN4924 translated into significant tumor growth inhibition. In the OCI-Ly10 model tumor regressions were observed showing this model to be particularly sensitive to MLN4924 treatment, reflecting the addiction of these tumors to NF-kB signaling. Additionally we demonstrate an inhibition of the NAE pathway and NF-KB signaling in a primary human tumor DLBCL xenograft model (PHTX-22L) resulting in tumor regressions following MLN4924 treatment. In summary, in tumors dependent on NF-kB signaling for growth and survival, MLN4924 inhibition of CDL activity provides a novel mechanism for targeted NF-kB pathway modulation and therapeutic intervention. In addition, these data demonstrate that MLN4924 is a novel agent that has broad activity in pre-clinical models of lymphoma.


Sign in / Sign up

Export Citation Format

Share Document