Heterogeneous Ice Nucleation Rate Coefficient of Water Droplets Coated by a Nonadecanol Monolayer

2007 ◽  
Vol 111 (5) ◽  
pp. 2149-2155 ◽  
Author(s):  
B. Zobrist ◽  
T. Koop ◽  
B. P. Luo ◽  
C. Marcolli ◽  
T. Peter
2010 ◽  
Vol 10 (11) ◽  
pp. 25577-25617
Author(s):  
S. Hartmann ◽  
D. Niedermeier ◽  
J. Voigtländer ◽  
T. Clauss ◽  
R. A. Shaw ◽  
...  

Abstract. At the Leipzig Cloud Interaction Simulator (LACIS) experiments investigating homogeneous and heterogeneous nucleation of ice (particularly immersion freezing in the latter case) have been carried out. Here both the physical LACIS setup and the numerical model developed to design experiments at LACIS and interpret their results are presented in detail. Combining results from the numerical model with experimental data, it was found that for the experimental parameter space considered, classical homogeneous ice nucleation theory is able to predict the freezing behavior of highly diluted ammonium sulfate solution droplets, while classical heterogeneous ice nucleation theory, together with the assumption of a constant contact angle, fails to predict the immersion freezing behavior of surrogate mineral dust particles (Arizona Test Dust, ATD). The main reason for this failure is the compared to experimental data apparently overly strong temperature dependence of the nucleation rate coefficient. Assuming, in the numerical model, Classical Nucleation Theory (CNT) for homogeneous ice nucleation and a CNT-based parameterization for the nucleation rate coefficient in the immersion freezing mode, recently published by our group, it was found that even for a relatively effective ice nucleating agent such as pure ATD, there is a temperature range where homogeneous ice nucleation is dominant. The main explanation is the apparently different temperature dependencies of the two freezing mechanisms. Finally, reviewing the assumptions made during the derivation of the parameterization, it was found that the assumption of constant temperature during ice nucleation and the chosen nucleation time were highly justified, underlining the applicability of both the method to determine the fitting coefficients in the parameterization equation, and the validity of the parameterization concept itself.


2011 ◽  
Vol 11 (4) ◽  
pp. 1753-1767 ◽  
Author(s):  
S. Hartmann ◽  
D. Niedermeier ◽  
J. Voigtländer ◽  
T. Clauss ◽  
R. A. Shaw ◽  
...  

Abstract. At the Leipzig Aerosol Cloud Interaction Simulator (LACIS) experiments investigating homogeneous and heterogeneous nucleation of ice (particularly immersion freezing in the latter case) have been carried out. Here both the physical LACIS setup and the numerical model developed to design experiments at LACIS and interpret their results are presented in detail. Combining results from the numerical model with experimental data, it was found that for the experimental parameter space considered, classical homogeneous ice nucleation theory is able to predict the freezing behavior of highly diluted ammonium sulfate solution droplets, while classical heterogeneous ice nucleation theory, together with the assumption of a constant contact angle, fails to predict the immersion freezing behavior of surrogate mineral dust particles (Arizona Test Dust, ATD). The main reason for this failure is the compared to experimental data apparently overly strong temperature dependence of the nucleation rate coefficient. Assuming, in the numerical model, Classical Nucleation Theory (CNT) for homogeneous ice nucleation and a CNT-based parameterization for the nucleation rate coefficient in the immersion freezing mode, recently published by our group, it was found that even for a relatively effective ice nucleating agent such as pure ATD, there is a temperature range where homogeneous ice nucleation is dominant. The main explanation is the apparently different temperature dependencies of the two freezing mechanisms. Finally, reviewing the assumptions made during the derivation of the CNT-based parameterization for immersion freezing, it was found that the assumption of constant temperature during ice nucleation and the chosen ice nucleation time were justified, underlining the applicability of the method to determine the fitting coefficients in the parameterization equation.


Author(s):  
Gavin C. Cornwell ◽  
Christina S. McCluskey ◽  
Paul J. DeMott ◽  
Kimberly A. Prather ◽  
Susannah M. Burrows

2018 ◽  
Vol 122 (40) ◽  
pp. 22892-22896 ◽  
Author(s):  
Jorge R. Espinosa ◽  
Carlos Vega ◽  
Eduardo Sanz

2017 ◽  
Vol 19 (30) ◽  
pp. 20075-20081 ◽  
Author(s):  
Yuri S. Djikaev ◽  
Eli Ruckenstein

Dependence of the ice-nucleation-rate in water droplets on their radii and temperature is determined by taking into account volume-based and surface-stimulated modes.


2016 ◽  
Author(s):  
Lukas Kaufmann ◽  
Claudia Marcolli ◽  
Beiping Luo ◽  
Thomas Peter

Abstract. Homogeneous nucleation of ice in supercooled water droplets is a stochastic process. In its classical description, the growth of the ice phase requires the emergence of a critical embryo from random fluctuations of water molecules between the water bulk and ice-like clusters, which is associated with overcoming an energy barrier. For heterogeneous ice nucleation on ice-nucleating surfaces both, stochastic and deterministic descriptions are in use. Deterministic (singular) descriptions are often favored because the temperature dependence of ice nucleation on a substrate usually dominates the stochastic time dependence, and the ease of representation facilitates the incorporation in climate models. Conversely, classical nucleation theory (CNT) describes heterogeneous ice nucleation as a stochastic process with a reduced energy barrier for the formation of a critical embryo in the presence of an ice-nucleating surface. This reduction is conveniently parameterized in terms of a contact angle α between the ice phase immersed in liquid water and the heterogeneous surface area. This study investigates various ice-nucleating agents in immersion mode by subjecting them to repeated freezing cycles to elucidate and discriminate the time and temperature dependences of heterogeneous ice nucleation. Freezing rates determined from such refreeze experiments are presented for Hoggar Mountain dust, birch pollen washing water and Arizona Test Dust (ATD) and nonadecanol coatings. For the analysis of the experimental data with CNT we assumed the same active site to be always responsible for freezing. Three different CNT-based parame-terizations were used to describe rate coefficients for heterogeneous ice nucleation as a function of temperature, all leading to very similar results: for Hoggar Mountain dust, ATD and larger nonadecanol coated water droplets, the experimentally determined increase of freezing rate with decreasing temperature is too shallow to be described properly by CNT using the contact angle as the only fit parameter. Birch pollen washing water and small nonadecanol coated water droplets show the reverse behavior with temperature dependencies of freezing rates steeper than predicted by CNT formulations. Good agreement of observations and calculations can be obtained when a prefactor β is introduced to the rate coefficient as second fit parameter. Thus, the following microphysical picture emerges: Heterogeneous freezing occurs on ice-nucleating sites that need a minimum (critical) surface area to host embryos of critical size to grow into a crystal. Fits based on CNT suggest that the critical active site area is in the range of 10–50 nm2 depending on sample, temperature, and CNT-based parameterization. Two fitting parameters are needed to characterize individual active sites. The contact angle lowers the energy barrier that has to be overcome to form the critical embryo on the site compared to the homogeneous case where the critical embryo develops in the volume of water. The prefactor β is needed to adjust the calculated slope of freezing rate increase with decreasing temperature to the measured one. When it is large, there are many nucleation attempts and nucleation occurs immediately when the temperature is low enough so that the active site can accommodate a critical embryo. This is the case for active sites of birch pollen washing water and the small droplets coated with nonadecanol. If the prefactor is low, the number of nucleation attempts is low and the increase of freezing rate with decreasing temperature is shallow. This is the case for Hoggar Mountain dust, the large droplets coated with nonadecanol, and ATD. Different hypotheses why the value of the prefactor depends on the nature of the active sites are discussed.


2017 ◽  
Vol 17 (5) ◽  
pp. 3525-3552 ◽  
Author(s):  
Lukas Kaufmann ◽  
Claudia Marcolli ◽  
Beiping Luo ◽  
Thomas Peter

Abstract. Homogeneous nucleation of ice in supercooled water droplets is a stochastic process. In its classical description, the growth of the ice phase requires the emergence of a critical embryo from random fluctuations of water molecules between the water bulk and ice-like clusters, which is associated with overcoming an energy barrier. For heterogeneous ice nucleation on ice-nucleating surfaces both stochastic and deterministic descriptions are in use. Deterministic (singular) descriptions are often favored because the temperature dependence of ice nucleation on a substrate usually dominates the stochastic time dependence, and the ease of representation facilitates the incorporation in climate models. Conversely, classical nucleation theory (CNT) describes heterogeneous ice nucleation as a stochastic process with a reduced energy barrier for the formation of a critical embryo in the presence of an ice-nucleating surface. The energy reduction is conveniently parameterized in terms of a contact angle α between the ice phase immersed in liquid water and the heterogeneous surface. This study investigates various ice-nucleating agents in immersion mode by subjecting them to repeated freezing cycles to elucidate and discriminate the time and temperature dependences of heterogeneous ice nucleation. Freezing rates determined from such refreeze experiments are presented for Hoggar Mountain dust, birch pollen washing water, Arizona test dust (ATD), and also nonadecanol coatings. For the analysis of the experimental data with CNT, we assumed the same active site to be always responsible for freezing. Three different CNT-based parameterizations were used to describe rate coefficients for heterogeneous ice nucleation as a function of temperature, all leading to very similar results: for Hoggar Mountain dust, ATD, and larger nonadecanol-coated water droplets, the experimentally determined increase in freezing rate with decreasing temperature is too shallow to be described properly by CNT using the contact angle α as the only fit parameter. Conversely, birch pollen washing water and small nonadecanol-coated water droplets show temperature dependencies of freezing rates steeper than predicted by all three CNT parameterizations. Good agreement of observations and calculations can be obtained when a pre-factor β is introduced to the rate coefficient as a second fit parameter. Thus, the following microphysical picture emerges: heterogeneous freezing occurs at ice-nucleating sites that need a minimum (critical) surface area to host embryos of critical size to grow into a crystal. Fits based on CNT suggest that the critical active site area is in the range of 10–50 nm2, with the exact value depending on sample, temperature, and CNT-based parameterization. Two fitting parameters are needed to characterize individual active sites. The contact angle α lowers the energy barrier that has to be overcome to form the critical embryo at the site compared to the homogeneous case where the critical embryo develops in the volume of water. The pre-factor β is needed to adjust the calculated slope of freezing rate increase with temperature decrease. When this slope is steep, this can be interpreted as a high frequency of nucleation attempts, so that nucleation occurs immediately when the temperature is low enough for the active site to accommodate a critical embryo. This is the case for active sites of birch pollen washing water and for small droplets coated with nonadecanol. If the pre-factor is low, the frequency of nucleation attempts is low and the increase in freezing rate with decreasing temperature is shallow. This is the case for Hoggar Mountain dust, the large droplets coated with nonadecanol, and ATD. Various hypotheses why the value of the pre-factor depends on the nature of the active sites are discussed.


2012 ◽  
Vol 12 (8) ◽  
pp. 21321-21353 ◽  
Author(s):  
S. Hartmann ◽  
S. Augustin ◽  
T. Clauss ◽  
J. Voigtländer ◽  
D. Niedermeier ◽  
...  

Abstract. Biological particles, e.g. bacteria and their Ice Nucleating Active (INA) protein complexes, might play an important role for the ice formation in atmospheric mixed-phase clouds. Therefore, the immersion freezing behavior of INA protein complexes generated from a SnomaxTM solution/suspension was investigated as function of temperature in a range of −5 °C to −38 °C at the Leipzig Aerosol Cloud Interaction Simulator (LACIS). The immersion freezing of droplets containing small numbers of INA protein complexes occurs in a temperature range of −7 °C and −10 °C. The experiments performed in the lower temperature range, where all droplets freeze which contain at least one INA protein complex, are used to determine the average number of INA protein complexes present, assuming that the INA protein complexes are Poisson distributed over the droplet ensemble. Knowing the average number of INA protein complexes, the heterogeneous ice nucleation rate and rate coefficient of a single INA protein complex is determined by using the newly-developed CHESS model (stoCHastic model of idEntical poiSSon distributed ice nuclei). Therefore, we assume the ice nucleation process to be of stochastic nature, and a parameterization of the INA protein complex's nucleation rate. Analyzing the results of immersion freezing experiments from literature (SnomaxTM and Pseudomonas syringae bacteria), to results gained in this study, demonstrates that first, a similar temperature dependence of the heterogeneous ice nucleation rate for a single INA protein complex was found in all experiments, second, the shift of the ice fraction curves to higher temperatures can be explained consistently by a higher average number of INA protein complexes being present in the droplet ensemble, and finally the heterogeneous ice nucleation rate of one single INA protein complex might be also applicable for intact Pseudomonas syringae bacteria cells. The results obtained in this study allow a new perspective on the interpretation of immersion freezing experiments considering INA protein complexes and the derived simple parameterization of the heterogeneous ice nucleation rate can be used in cloud resolving models for studying the effect of bacteria induced ice nucleation.


Sign in / Sign up

Export Citation Format

Share Document