Solution and Solid-State Effects on NMR Chemical Shifts in Sesquiterpene Lactones: NMR, X-ray, and Theoretical Methods

2011 ◽  
Vol 116 (1) ◽  
pp. 680-688 ◽  
Author(s):  
Martin Dračínský ◽  
Miloš Buděšínský ◽  
Beata Warżajtis ◽  
Urszula Rychlewska

1980 ◽  
Vol 58 (8) ◽  
pp. 815-822 ◽  
Author(s):  
K. Lindström ◽  
F. Österberg

3,4,5-Trichloroguaiacol, which is formed during bleaching of chemical pulp and shown to bioaccumulate in fish, has been synthesized. The structure of the compound has been determined by means of X-ray analysis. The values of the 13C nmr chemical shifts and melting point differ from those previously reported. A reaction mechanism is suggested for the formation of 3,4,5- and 4,5,6-trichloroguaiacol.



1998 ◽  
Vol 102 (17) ◽  
pp. 3073-3076 ◽  
Author(s):  
Daisuke Sato ◽  
Naoki Asakawa ◽  
Minoru Sakurai ◽  
Yoshio Inoue


2001 ◽  
Vol 79 (2) ◽  
pp. 195-200 ◽  
Author(s):  
Gerald W Buchanan ◽  
Majid F Rastegar ◽  
Glenn PA Yap

Benzo-9-crown-3 ether trimerizes in the presence of FeCl3 and aqueous H2SO4 to produce tris(9-crown-3)triphenylene in 25.4% yield. This compound crystallizes in the monoclinic P21/c space group: a = 13.759(2) Å, b = 13.318(2) Å, c = 13.399(2) Å, β = 96.883(2)°, with Z = 4. The three 9-crown-3 ether units of the trimer possess different geometries and there is substantial deviation from coplanarity in the three aromatic rings. 13C NMR chemical shifts in the solid state are consistent with this lack of symmetry and are discussed in terms of the X-ray crystal-structure data.Key words: crown ether, trimerization, stereochemistry.





2016 ◽  
Vol 22 (47) ◽  
pp. 16694-16694 ◽  
Author(s):  
Paolo Cerreia Vioglio ◽  
Luca Catalano ◽  
Vera Vasylyeva ◽  
Carlo Nervi ◽  
Michele R. Chierotti ◽  
...  


2010 ◽  
Vol 132 (17) ◽  
pp. 5993-6000 ◽  
Author(s):  
Itzam De Gortari ◽  
Guillem Portella ◽  
Xavier Salvatella ◽  
Vikram S. Bajaj ◽  
Patrick C. A. van der Wel ◽  
...  




2006 ◽  
Vol 61 (10-11) ◽  
pp. 600-606
Author(s):  
Savitha M. Basappa ◽  
Basavalinganadoddy Thimme Gowda

Twenty six N-(2/3/4-substituted phenyl)-2,4-disubstituted benzenesulphonamides of the general formulae 2,4-(CH3)2C6H3SO2NH(i-XC6H4), 2-CH3-4-ClC6H3SO2NH(i-XC6H4) and 2,4- Cl2C6H3SO2NH(i-XC6H4), where i-X = H, 2-CH3, 3-CH3, 4-CH3, 2-Cl, 3-Cl, 4-Cl, 4-F or 4-Br, have been prepared, characterized and their infrared spectra in the solid state and 1H and 13C NMR spectra in solution studied. The infrared N-H stretching vibrational frequencies vary in the range 3298 - 3233 cm−1. Asymmetric and symmetric SO stretching vibrations appear in the ranges 1373 - 1311 cm−1 and 1177 - 1140 cm−1, respectively, while C-S, S-N and C-N stretching absorptions vary in the ranges 840 - 812 cm−1, 972 - 908 cm−1 and 1295 - 1209 cm−1, respectively. The various 1H and 13C NMR chemical shifts are assigned to the protons and carbon atoms of the two benzene rings in line with those for similar compounds. The incremental shifts due to the groups in the parent compounds have been computed by comparing the chemical shifts of the protons or carbon atoms in these compounds with those of benzene or aniline, respectively. The computed incremental shifts and other data were used to calculate the 1H and 13C NMR chemical shifts of the substituted compounds in three different ways. The calculated chemical shifts by the three methods compared well with each other and with the observed chemical shifts. It is observed that there are no particular trends in the variation of either the infrared absorption frequencies or the chemical shifts with the nature or site of substitution.



Sign in / Sign up

Export Citation Format

Share Document