Charge-Driven Selective Adsorption of Sodium Dodecyl Sulfate on Graphene Oxide Visualized by Atomic Force Microscopy

2012 ◽  
Vol 116 (37) ◽  
pp. 20080-20085 ◽  
Author(s):  
A. Jaeton Glover ◽  
Douglas H. Adamson ◽  
Hannes C. Schniepp
2013 ◽  
Vol 28 (2) ◽  
pp. 68-71 ◽  
Author(s):  
Thomas N. Blanton ◽  
Debasis Majumdar

In an effort to study an alternative approach to make graphene from graphene oxide (GO), exposure of GO to high-energy X-ray radiation has been performed. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) have been used to characterize GO before and after irradiation. Results indicate that GO exposed to high-energy radiation is converted to an amorphous carbon phase that is conductive.


Author(s):  
Abolfazl Darroudi ◽  
Saeid Nazari ◽  
Seyed Ali Marashi ◽  
Mahdi Karimi-Nazarabad

Abstract An accurate, rapid, simple, and novel technique was developed to determine simvastatin (SMV). In this research, a screen-printed electrode (SPE) was deposited with graphene oxide (GO) and sodium dodecyl sulfate (SDS), respectively. For the first time, the handmade modified SPE measured the SMV by differential pulse voltammetry (DPV) with high sensitivity and selectivity. The results of cyclic voltammetry indicated the oxidation irreversible process of SMV. Various parameters (pH, concentration, scan rate, support electrolyte) were performed to optimize the conditions for the determination of SMV. Under the optimum experiment condition of 0.1 M KNO3 as support electrolyte and pH 7.0, the linear range was achieved for SMV concentration from 1.8 to 36.6 µM with a limit of detection (LOD), and a limit of quantitation (LOQ) of 0.06 and 1.8 µM, respectively. The proposed method was successfully utilized to determine SMV in tablets and urine samples with a satisfactory recovery in the range of 96.2 to 103.3%.


2010 ◽  
Vol 97 (13) ◽  
pp. 133301 ◽  
Author(s):  
Yudong He ◽  
Huanli Dong ◽  
Tao Li ◽  
Chengliang Wang ◽  
Wei Shao ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Yong Wu He ◽  
Yi Feng ◽  
Lian Wei Kang ◽  
Xiao Liang Li

A graphene oxide- (GO-) boradiazaindacenes (BODIPY) charge-transfer complex (BGO) has been easily synthesized, and the structure of BGO was confirmed by FT-IR and atomic force microscopy (AFM). Moreover, the BGO was found that could be used as a turn-on fluorescent sensor for Hg2+. Upon addition of Hg2+, the fluorescence of BGO would be enhanced since the energy transfer between BODIPY and GO was inhibited. The selectivity and the competition performance of BGO towards Hg2+ were good among other heavy metal ions.


Sign in / Sign up

Export Citation Format

Share Document