Impact of Lewis Base on Chemical Reactivity and Separation Efficiency for Hydrated Fourth-Row Transition Metal (II) Complexes: An ONIOM DFT/MM Study

2014 ◽  
Vol 118 (16) ◽  
pp. 2984-2994 ◽  
Author(s):  
Dingsheng He ◽  
Ming Ma
Author(s):  
R. Morris Bullock ◽  
Geoffrey M. Chambers

This perspective examines frustrated Lewis pairs (FLPs) in the context of heterolytic cleavage of H 2 by transition metal complexes, with an emphasis on molecular complexes bearing an intramolecular Lewis base. FLPs have traditionally been associated with main group compounds, yet many reactions of transition metal complexes support a broader classification of FLPs that includes certain types of transition metal complexes with reactivity resembling main group-based FLPs. This article surveys transition metal complexes that heterolytically cleave H 2 , which vary in the degree that the Lewis pairs within these systems interact. Many of the examples include complexes bearing a pendant amine functioning as the base with the metal functioning as the hydride acceptor. Consideration of transition metal compounds in the context of FLPs can inspire new innovations and improvements in transition metal catalysis. This article is part of the themed issue ‘Frustrated Lewis pair chemistry’.


Synthesis ◽  
2021 ◽  
Author(s):  
Felix Wech ◽  
Urs Gellrich

In recent years, borane-based frustrated Lewis pairs proved to be efficient hydrogenation catalysts and became an alternative to transition metal-based systems. The hydrogen activation by classic FLPs leads to a protonated Lewis base and a borohydride. Consequently, hydrogenations catalyzed by classic FLPs consist of stepwise hydride transfer reactions and protonations (or vice versa). More recently, systems that operate via an initial hydroboration have allowed extending the substrate scope for FLP catalyzed hydrogenations. Within this review, hydrogenations of organic substrates catalyzed by borane-based frustrated Lewis pairs are discussed. Emphasis is given to the mechanistic aspects of these catalytic reactions.


2019 ◽  
Vol 21 (13) ◽  
pp. 6868-6877 ◽  
Author(s):  
Yih Chung Chang ◽  
Yuntao Xu ◽  
Cheuk-Yiu Ng

By utilizing a newly developed spin-orbit electronic state selected ion source for atomic transition metal vanadium cation (V+), the chemical reactivity of V+ with CO2 has been examined in detail, indicating that the titled reaction is dominantly governed by electron spin conservation, and thus the chemical reactivity can be controlled by quantum electronic state selections.


2008 ◽  
Vol 80 (5) ◽  
pp. 953-966 ◽  
Author(s):  
Pavel Kočovský ◽  
Andrei V. Malkov

Umpolung in the allylation reaction is discussed with examples drawn from transition-metal-catalyzed allylic substitution (with the allylic unit acting as an electrophile) and Lewis base-catalyzed allylation of aldehydes with allyltrichlorosilane (with the allyl acting as a nucleophile). Iridium-catalyzed electrophilic allylation of O-nucleophiles has been employed in our new approach to C-nucleoside analogs, where the C-O bond (rather than C-C) was constructed stereospecifically. Variation of the absolute configuration in the starting segments allowed the synthesis of all four combinations of D/L-α/β-ribosides. In the nucleophilic allylation of aldehydes, chiral pyridine-type N-oxide catalysts are presented, in particular QUINOX and METHOX, and the intriguing behavior of QUINOX is discussed. Here, the π-π interactions between the substrate aldehyde and the catalyst are suggested to rationalize the experimental observations. Good correlation between the calculated energies for the transition states and the experimentally observed enantioselectivities has been obtained.


1996 ◽  
Vol 464 ◽  
Author(s):  
F. Kivuitu ◽  
S. P. Kelty

ABSTRACTThe chemical reactivity of catalytic surfaces often arises from a unique crystal or electronic structure confined to the first few atomic layers. Scanning Tunneling Microscopy (STM) is particularly well suited to studying the spatially confined structural properties of such systems. In this paper, I report recent advances in the characterization of colloidal layered transition metal chalcogenides using STM. These particles mimic the surface (layer edge) properties of bulk catalytic materials. It is found that the materials adopt distinct equilibrium chemical and electronic structures as compared to the bulk. The possible significance of these novel structures in regard to the bulk catalytic functionality of the parent material will be briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document