Mapping Single Molecular Binding Kinetics of Carbohydrate-Binding Module with Crystalline Cellulose by Atomic Force Microscopy Recognition Imaging

2014 ◽  
Vol 118 (24) ◽  
pp. 6714-6720 ◽  
Author(s):  
Mengmeng Zhang ◽  
Bin Wang ◽  
Bingqian Xu
2013 ◽  
pp. 102-112
Author(s):  
Memed Duman ◽  
Andreas Ebner ◽  
Christian Rankl ◽  
Jilin Tang ◽  
Lilia A. Chtcheglova ◽  
...  

Nanoscale ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 4213-4220
Author(s):  
Tatsuhiro Maekawa ◽  
Takashi Nyu ◽  
Evan Angelo Quimada Mondarte ◽  
Hiroyuki Tahara ◽  
Kasinan Suthiwanich ◽  
...  

We report a new approach to visualize the local distribution of molecular recognition sites with nanoscale resolution by amplitude-modulation atomic force microscopy.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2348 ◽  
Author(s):  
Katrin Niegelhell ◽  
Thomas Ganner ◽  
Harald Plank ◽  
Evelyn Jantscher-Krenn ◽  
Stefan Spirk

Lectins are a diverse class of carbohydrate binding proteins with pivotal roles in cell communication and signaling in many (patho)physiologic processes in the human body, making them promising targets in drug development, for instance, in cancer or infectious diseases. Other applications of lectins employ their ability to recognize specific glycan epitopes in biosensors and glycan microarrays. While a lot of research has focused on lectin interaction with specific carbohydrates, the interaction potential of lectins with different types of surfaces has not been addressed extensively. Here, we screen the interaction of two specific plant lectins, Concanavalin A and Ulex Europaeus Agglutinin-I with different nanoscopic thin films. As a control, the same experiments were performed with Bovine Serum Albumin, a widely used marker for non-specific protein adsorption. In order to test the preferred type of interaction during adsorption, hydrophobic, hydrophilic and charged polymer films were explored, such as polystyrene, cellulose, N,-N,-N-trimethylchitosan chloride and gold, and characterized in terms of wettability, surface free energy, zeta potential and morphology. Atomic force microscopy images of surfaces after protein adsorption correlated very well with the observed mass of adsorbed protein. Surface plasmon resonance spectroscopy studies revealed low adsorbed amounts and slow kinetics for all of the investigated proteins for hydrophilic surfaces, making those resistant to non-specific interactions. As a consequence, they may serve as favorable supports for biosensors, since the use of blocking agents is not necessary.


Author(s):  
Andreas Ebner ◽  
Lilia Chtcheglova ◽  
Jilin Tang ◽  
David Alsteens ◽  
Vincent Dupres ◽  
...  

2018 ◽  
pp. 1-14
Author(s):  
Memed Duman ◽  
Yoo Jin Oh ◽  
Rong Zhu ◽  
Michael Leitner ◽  
Andreas Ebner ◽  
...  

2009 ◽  
Vol 284 (52) ◽  
pp. 36186-36190 ◽  
Author(s):  
Kiyohiko Igarashi ◽  
Anu Koivula ◽  
Masahisa Wada ◽  
Satoshi Kimura ◽  
Merja Penttilä ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document