Origin of the Lone Pair of α-PbO from Density Functional Theory Calculations

1999 ◽  
Vol 103 (8) ◽  
pp. 1258-1262 ◽  
Author(s):  
G. W. Watson ◽  
S. C. Parker
Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6552
Author(s):  
Long Truong Nguyen ◽  
Guy Makov

Tin monoxide, SnO, and its analog, lead monoxide, PbO, have the same tetragonal P4/nmm structure, shaped by nonbonding dispersion forces and lone pairs. The high-pressure phases of SnO and PbO have been explored in several experimental and theoretical studies, with conflicting results. In this study, the high-pressure structures of SnO and PbO are investigated using density functional theory calculations combined with an evolutionary algorithm to identify novel high-pressure phases. We propose that the monoclinic P21/m SnO and orthorhombic Pmmn PbO phases, which are metastable at 0 GPa, are a slight rearrangement of the tetragonal P4/nmm-layered structure. These orthorhombic (and their closely related monoclinic) phases become more favored than the tetragonal phase upon compression. In particular, the transition pressures to the orthorhombic γ-phase Pmn21of SnO/PbO and the monoclinic phase P21/m of SnO are found to be consistent with experimental studies. Two new high-pressure SnO/PbO polymorphs are predicted: the orthorhombic Pbcm phase of SnO and the monoclinic C2/m of PbO. These phases are stabilized in our calculations when P > 65 GPa and P > 50 GPa, respectively. The weakening of the lone pair localization and elastic instability are the main drivers of pressure-induced phase transitions. Modulations of the SnO/PbO electronic structure due to structural transitions upon compression are also discussed.


1997 ◽  
Vol 52 (2) ◽  
pp. 296-300 ◽  
Author(s):  
Arne Haaland ◽  
Vasili Ivanovitch Sokolov ◽  
Hans Vidar Volden ◽  
Hans Joachim Breunig ◽  
Michael Denker ◽  
...  

Abstract Density Functional Theory calculations on E(SbMe2)2, E = O, S or Se, Me = CH3, indicate that the equilibrium structures are syn-syn or near syn-syn conformers with over-all C2 symmetry. The barriers restricting rotation about E-Sb bonds are very low, the equilibrium values for the dihedral angles ϕ(Sb-E-Sb-lp) where lp denotes the direction of the electron lone pair on one of the Sb atoms are probably less than 45°. The calculations further indicate the existence of syn-anti conformers some 4 kJ mol-1 above the more stable syn-syn. Gas electron diffraction data show that both conformers are present in gaseous O(SbMe2)2, while the presence of the syn-anti conformer in gaseous Se(SbMe2)2 is uncertain; least-squares refinements yielded the mole fraction χ = 0.27(18). The Sb-O and Sb-Se bond distances are 197.6(14) and 255.1(5) pm respectively, the valence angles of the syn-syn conformers are <SbOSb = 122.3(16)° and <SbSeSb = 96.3(11)°. It is suggested that the wide <SbOSb angle is due to across-angle repulsion between the Sb atoms.


2006 ◽  
Vol 71 (11-12) ◽  
pp. 1525-1531 ◽  
Author(s):  
Wojciech Grochala

The enthalpy of four polymorphs of CaN has been scrutinized at 0 and 100 GPa using density functional theory calculations. It is shown that structures of diamagnetic calcium diazenide (Ca2N2) are preferred over the cubic ferromagnetic polymorph (CaN) postulated before, both at 0 and 100 GPa.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chih-Chuen Lin ◽  
Phani Motamarri ◽  
Vikram Gavini

AbstractWe present a tensor-structured algorithm for efficient large-scale density functional theory (DFT) calculations by constructing a Tucker tensor basis that is adapted to the Kohn–Sham Hamiltonian and localized in real-space. The proposed approach uses an additive separable approximation to the Kohn–Sham Hamiltonian and an L1 localization technique to generate the 1-D localized functions that constitute the Tucker tensor basis. Numerical results show that the resulting Tucker tensor basis exhibits exponential convergence in the ground-state energy with increasing Tucker rank. Further, the proposed tensor-structured algorithm demonstrated sub-quadratic scaling with system-size for both systems with and without a gap, and involving many thousands of atoms. This reduced-order scaling has also resulted in the proposed approach outperforming plane-wave DFT implementation for systems beyond 2000 electrons.


2021 ◽  
Vol 60 (8) ◽  
pp. 6016-6026
Author(s):  
Aydar Rakhmatullin ◽  
Maxim S. Molokeev ◽  
Graham King ◽  
Ilya B. Polovov ◽  
Konstantin V. Maksimtsev ◽  
...  

Author(s):  
Lijuan Meng ◽  
Jinlian Lu ◽  
Yujie Bai ◽  
Lili Liu ◽  
Tang Jingyi ◽  
...  

Understanding the fundamentals of chemical vapor deposition bilayer graphene growth is crucial for its synthesis. By employing density functional theory calculations and classical molecular dynamics simulations, we have investigated the...


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Long Lin ◽  
Linwei Yao ◽  
Shaofei Li ◽  
Zhengguang Shi ◽  
Kun Xie ◽  
...  

AbstractFinding the active sites of suitable metal oxides is a key prerequisite for detecting CH$$_4$$ 4 . The purpose of the paper is to investigate the adsorption of CH$$_4$$ 4 on intrinsic and oxygen-vacancies CuO (111) and (110) surfaces using density functional theory calculations. The results show that CH$$_4$$ 4 has a strong adsorption energy of −0.370 to 0.391 eV at all site on the CuO (110) surface. The adsorption capacity of CH$$_4$$ 4 on CuO (111) surface is weak, ranging from −0.156 to −0.325 eV. In the surface containing oxygen vacancies, the adsorption capacity of CuO surface to CH$$_4$$ 4 is significantly stronger than that of intrinsic CuO surface. The results indicate that CuO (110) has strong adsorption and charge transfer capacity for CH$$_4$$ 4 , which may provide experimental guidance.


Sign in / Sign up

Export Citation Format

Share Document