Characterization of Porous Materials by Gas Adsorption:  Do Different Molecular Probes Give Different Pore Structures?

2000 ◽  
Vol 104 (2) ◽  
pp. 313-318 ◽  
Author(s):  
S. Scaife ◽  
P. Kluson ◽  
N. Quirke
Author(s):  
Marcos de Oliveira Jr. ◽  
Kevin Herr ◽  
Martin Brodrecht ◽  
Nadia Berenice Haro-Mares ◽  
Till Wissel ◽  
...  

High-field Dynamic Nuclear Polarization is a powerful tool for the structural characterization of species on the surface of porous materials or nanoparticles. For these studies the main source of polarization...


2021 ◽  
Vol 44 (1) ◽  
pp. 117-128
Author(s):  
Muhammad Kamran Siddiqui ◽  
Yu-Ming Chu ◽  
Muhammad Nasir ◽  
Murat Cancan

Abstract Porous materials, for example, metalnatural structures (MOFs) and their discrete partners metalnatural polyhedra (MOPs), that are built from coordinatively unsaturated inorganic hubs show incredible potential for application in gas adsorption/partition cycles, catalysis, and arising openings in hardware, optics, detecting, and biotechnology. A well-known hetero-bimetallic metalorganic polyhedra of this discrete partners metalnatural polyhedra (MOPs) class is cuboctahedral bi-metallic stricture. In this paper, we discuss the stricture of Hetero-bimetallic metalorganic polyhedra (cuboctahedral bi-metallic). Also, we computed the topological indices based on the degree of atoms in this cuboctahedral bi-metallic structure.


2014 ◽  
Vol 1712 ◽  
Author(s):  
Seyoon Yoon ◽  
Isabel Galan ◽  
Kemal Celik ◽  
Fredrik P. Glasser ◽  
Mohammed S. Imbabi

ABSTRACTCalcium sulfoaluminate (CSA) cements are being developed using a novel processing method having as its objective lowering specific CO2 emissions by ∼50% relative to a Portland cement benchmark. We need to be able to measure the properties of the products. Porosity and permeability measurements help define the engineering properties but their quantification is influenced by the choice of experimental protocols. In the present study we used ordinary Portland cement (PC) paste as a benchmark and hydrated ye’elimite, which is a main component of CSA cements, to understand its pore structure. We report on the use of synchrotron-sourced radiation for µCT (Computerized Tomography) and 3D image re-construction of the internal micro-pore structure of PC and ye’elimite-gypsum pastes. As a comparison, porosity and permeability measurements were traditionally obtained using Mercury Intrusion Porosimetry (MIP). The Mori-Tanaka method and the polynomial statistical model were used to analyze the effects of different 3-D micro-pore structures on mechanical properties. The results show that e micro-pore structures differ considerably between PC and ye’elimite pastes and their bulk modulus is significantly affected by the shapes of their micro-pore structures.


Author(s):  
Ulrike Homberg ◽  
Daniel Baum ◽  
Alexander Wiebel ◽  
Steffen Prohaska ◽  
Hans-Christian Hege

Sign in / Sign up

Export Citation Format

Share Document