Microrheology of a Sheared Langmuir Monolayer:  Elastic Recovery and Interdomain Slippage

Langmuir ◽  
2001 ◽  
Vol 17 (11) ◽  
pp. 3406-3411 ◽  
Author(s):  
Ani T. Ivanova ◽  
Jordi Ignés-Mullol ◽  
Daniel K. Schwartz
Author(s):  
Tim Oliver ◽  
Akira Ishihara ◽  
Ken Jacobsen ◽  
Micah Dembo

In order to better understand the distribution of cell traction forces generated by rapidly locomoting cells, we have applied a mathematical analysis to our modified silicone rubber traction assay, based on the plane stress Green’s function of linear elasticity. To achieve this, we made crosslinked silicone rubber films into which we incorporated many more latex beads than previously possible (Figs. 1 and 6), using a modified airbrush. These films could be deformed by fish keratocytes, were virtually drift-free, and showed better than a 90% elastic recovery to micromanipulation (data not shown). Video images of cells locomoting on these films were recorded. From a pair of images representing the undisturbed and stressed states of the film, we recorded the cell’s outline and the associated displacements of bead centroids using Image-1 (Fig. 1). Next, using our own software, a mesh of quadrilaterals was plotted (Fig. 2) to represent the cell outline and to superimpose on the outline a traction density distribution. The net displacement of each bead in the film was calculated from centroid data and displayed with the mesh outline (Fig. 3).


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1194
Author(s):  
Philipp Kiryukhantsev-Korneev ◽  
Alina Sytchenko ◽  
Yuriy Kaplanskii ◽  
Alexander Sheveyko ◽  
Stepan Vorotilo ◽  
...  

The coatings ZrB2 and Zr-B-N were deposited by magnetron sputtering of ZrB2 target in Ar and Ar–15%N2 atmospheres. The structure and properties of the coatings were investigated via scanning and transmission electron microscopy, energy dispersion analysis, optical profilometry, glowing discharge optical emission spectroscopy and X-ray diffraction analysis. Mechanical and tribological properties of the coatings were investigated using nanoindentation, “pin-on-disc” tribological testing and “ball-on-plate” impact testing. Free corrosion potential and corrosion current density were measured by electrochemical testing in 1N H2SO4 and 3.5%NaCl solutions. The oxidation resistance of the coatings was investigated in the 600–800 °С temperature interval. The coatings deposited in Ar contained 4–11 nm grains of the h-ZrB2 phase along with free boron. Nitrogen-containing coatings consisted of finer crystals (1–4 nm) of h-ZrB2, separated by interlayers of amorphous a-BN. Both types of coatings featured hardness of 22–23 GPa; however, the introduction of nitrogen decreased the coating’s elastic modulus from 342 to 266 GPa and increased the elastic recovery from 62 to 72%, which enhanced the wear resistance of the coatings. N-doped coatings demonstrated a relatively low friction coefficient of 0.4 and a specific wear rate of ~1.3 × 10−6 mm3N−1m−1. Electrochemical investigations revealed that the introduction of nitrogen into the coatings resulted in the decrease of corrosion current density in 3.5% NaCl and 1N H2SO4 solution up to 3.5 and 5 times, correspondingly. The superior corrosion resistance of Zr-В-N coatings was related to the finer grains size and increased volume of the BN phase. The samples ZrB2 and Zr-B-N resisted oxidation at 600 °C. N-free coatings resisted oxidation (up to 800 °С) and the diffusion of metallic elements from the substrate better. In contrast, Zr-B-N coatings experienced total oxidation and formed loose oxide layers, which could be easily removed from the substrate.


Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 823
Author(s):  
Alexander M. Grishin

We report optical and mechanical properties of hard aluminum magnesium boride films magnetron sputtered from a stoichiometric AlMgB14 ceramic target onto Corning® 1737 Glass and Si (100) wafers. High target sputtering rf-power and sufficiently short target-to-substrate distance appeared to be critical processing conditions. Amorphous AlMgB14 films demonstrate very strong indentation size effect (ISE): exceptionally high nanohardness H = 88 GPa and elastic Young’s modulus E* = 517 GPa at 26 nm of the diamond probe penetration depth and almost constant values, respectively, of about 35 GPa and 275 GPa starting at depths of about 2–3% of films’ thickness. For comparative analysis of elastic strain to failure index  H/E*, resistance to plastic deformation ratio H3/E*2 and elastic recovery ratio We were obtained in nanoindentation tests performed in a wide range of loading forces from 0.5 to 40 mN. High authentic numerical values of H = 50 GPa and E* = 340 GPa correlate with as low as only 10% of total energy dissipating through the plastic deformations.


1980 ◽  
Vol 12 (8) ◽  
pp. 483-494 ◽  
Author(s):  
Akira Tanaka ◽  
Yasuhiro Saihara ◽  
Shigeharu Onogi

2017 ◽  
Vol 91 (12) ◽  
pp. 2409-2414
Author(s):  
V. Yu. Buz’ko ◽  
G. Yu. Chuiko ◽  
M. E. Sokolov ◽  
V. T. Panyushkin

Sign in / Sign up

Export Citation Format

Share Document