Selective Assembly of Photosynthetic Antenna Proteins into a Domain-Structured Lipid Bilayer for the Construction of Artificial Photosynthetic Antenna Systems: Structural Analysis of the Assembly Using Surface Plasmon Resonance and Atomic Force Microscopy

Langmuir ◽  
2011 ◽  
Vol 27 (3) ◽  
pp. 1092-1099 ◽  
Author(s):  
Ayumi Sumino ◽  
Takehisa Dewa ◽  
Masaharu Kondo ◽  
Takashi Morii ◽  
Hideki Hashimoto ◽  
...  
The Analyst ◽  
2000 ◽  
Vol 125 (2) ◽  
pp. 245-250 ◽  
Author(s):  
Molly M. Stevens ◽  
Stephanie Allen ◽  
Martyn C. Davies ◽  
Clive J. Roberts ◽  
Saul J. B. Tendler ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2348 ◽  
Author(s):  
Katrin Niegelhell ◽  
Thomas Ganner ◽  
Harald Plank ◽  
Evelyn Jantscher-Krenn ◽  
Stefan Spirk

Lectins are a diverse class of carbohydrate binding proteins with pivotal roles in cell communication and signaling in many (patho)physiologic processes in the human body, making them promising targets in drug development, for instance, in cancer or infectious diseases. Other applications of lectins employ their ability to recognize specific glycan epitopes in biosensors and glycan microarrays. While a lot of research has focused on lectin interaction with specific carbohydrates, the interaction potential of lectins with different types of surfaces has not been addressed extensively. Here, we screen the interaction of two specific plant lectins, Concanavalin A and Ulex Europaeus Agglutinin-I with different nanoscopic thin films. As a control, the same experiments were performed with Bovine Serum Albumin, a widely used marker for non-specific protein adsorption. In order to test the preferred type of interaction during adsorption, hydrophobic, hydrophilic and charged polymer films were explored, such as polystyrene, cellulose, N,-N,-N-trimethylchitosan chloride and gold, and characterized in terms of wettability, surface free energy, zeta potential and morphology. Atomic force microscopy images of surfaces after protein adsorption correlated very well with the observed mass of adsorbed protein. Surface plasmon resonance spectroscopy studies revealed low adsorbed amounts and slow kinetics for all of the investigated proteins for hydrophilic surfaces, making those resistant to non-specific interactions. As a consequence, they may serve as favorable supports for biosensors, since the use of blocking agents is not necessary.


2005 ◽  
Vol 389 (3) ◽  
pp. 665-673 ◽  
Author(s):  
Roland Gamsjaeger ◽  
Alexander Johs ◽  
Anna Gries ◽  
Hermann J. Gruber ◽  
Christoph Romanin ◽  
...  

Complexes formed between β2GPI (β2-glycoprotein I), a human plasma protein, and biological membranes are considered to be targets of macrophages and antiphospholipid autoantibodies involved in autoimmune diseases, such as antiphospholipid syndrome or systemic lupus erythematosus. The positively charged lysine-rich fifth domain of β2GPI facilitates its interaction with phospholipid membranes containing acidic phospholipids, which normally become exposed by apoptotic processes. In the present study, atomic force microscopy was applied to visualize the binding of β2GPI to a mixed phospholipid model membrane at physiological ionic strength. On supported lipid bilayers the formation of supramolecular assemblies of the protein with a height of approx. 3.3 nm was observed, suggesting a lateral agglomeration of β2GPI. Detailed analysis of kinetic constants using surface plasmon resonance revealed that the binding can be described by a two-state reaction model, i.e. a very fast interaction step, depending on the content of acidic phospholipids in the bilayer, and a second step with significantly lower kon and koff values. Taken together, our results suggest a biphasic interaction mechanism: a fast step of β2GPI binding to negatively charged lipids, mainly based on electrostatic interactions, and a slower phase of agglomeration of the protein on the bilayer surface accompanied by a protein-induced rigidification of the membrane, as revealed by electron paramagnetic resonance.


Sign in / Sign up

Export Citation Format

Share Document