Imidazolium-Based Zwitterionic Surfactant: A New Amphiphilic Pd Nanoparticle Stabilizing Agent

Langmuir ◽  
2011 ◽  
Vol 28 (1) ◽  
pp. 833-840 ◽  
Author(s):  
Bruno S. Souza ◽  
Elder C. Leopoldino ◽  
Daniel W. Tondo ◽  
Jairton Dupont ◽  
Faruk Nome
1961 ◽  
Vol 06 (03) ◽  
pp. 435-444 ◽  
Author(s):  
Ricardo H. Landaburu ◽  
Walter H. Seegers

SummaryAn attempt was made to obtain Ac-globulin from bovine plasma. The concentrates contain mostly protein, and phosphorus is also present. The stability characteristics vary from one preparation to another, but in general there was no loss before 1 month in a deep freeze or before 1 week in an icebox, or before 5 hours at room temperature. Reducing agents destroy the activity rapidly. S-acetylmercaptosuccinic anhydride is an effective stabilizing agent. Greatest stability was at pH 6.0.In the purification bovine plasma is adsorbed with barium carbonate and diluted 6-fold with water. Protein is removed at pH 6.0 and the Ac-globulin is precipitated at pH 5.0. Rivanol and alcohol fractionation is followed by chromatography on Amberlite IRC-50 or DEAE-cellulose. The final product is obtained by isoelectric precipitation.


1955 ◽  
Author(s):  
G. R. Kozan ◽  
W. J. Turnbull ◽  
W. G. Shockley ◽  
J. E. Mitchell

2020 ◽  
Vol 17 (1) ◽  
pp. 33-39
Author(s):  
Karen C. Vargas-Castro ◽  
Ana M. Puebla Pérez ◽  
Irma I. Rangel-Salas ◽  
Jorge I. Delgado-Saucedo ◽  
José B. Pelayo-Vázquez ◽  
...  

Background: In the therapy of cancer, several treatments have been designed using nanomaterials, among which gold nanoparticles (AuNPs) have been featured as a promising antitumoral agent. Our research group has developed the synthesis of gold nanoparticles L-AuNPs and D-AuNPs stabilized with zwitterions of imidazolium (L-1 and D-1) derived from L-methionine and D-methionine. Because the stabilizer agent is chiral, we observed through circular dichroism that AuNPs also present chirality; such chirality as well as the fact that the stabilizing agent contains fragments of methionine and imidazolium that are commonly involved in biological processes, opens up the possibility that this system may have biological compatibility. Additionally, the presence of methionine in the stabilizing agent opens the application of this system as a possible antitumor agent because methionine is involved in methylation processes of molecules such as DNA. Objective: The aim of this research is the evaluation of the antitumor activity of gold nanoparticles stabilized with zwitterions of imidazolium (L-AuNPs) derived from L-methionine in the model of BALB/c mice with lymphoma L5178Y. Methods: Taking as a parameter cell density, the evaluation of the inhibitory effect of L-AuNPs was carried out with a series of in vivo tests in BALB/c type mice; three groups of five mice each were formed (Groups 1, 2 and 3); all mice were i.p. inoculated with the lymphoblast murine L5178Y. Group 1 consisted of mice without treatment. In the Groups 2 and 3 the mice were treated with L-AuNPs at 0.3 mg/Kg on days 1, 7 and 14 by orally and intraperitonally respectively. Results: These results show low antitumor activity of these gold nanoparticles (L-NPsAu) but interestingly, the imidazolium stabilizing agent of gold nanoparticle (L-1) displayed promising antitumor activity. On the other hand, the enantiomer of L-1, (D-1) as well as asymmetric imidazole derivate from L-methionine (L-2), do not exhibit the same activity as L-1. Conclusion: The imidazolium stabilizing agent (L-1) displayed promising antitumor activity. Modifications in the structure of L-1 showed that, the stereochemistry (like D-1) and the presence of methionine fragments (like L-2) are determinants in the antitumor activity of this compound.


Author(s):  
Chengcheng Liu ◽  
Koichi Suematsu ◽  
Akihito Uchiyama ◽  
Ken Watanabe ◽  
Yanbao Guo ◽  
...  

2021 ◽  
Author(s):  
Daniil A. Boiko ◽  
Evgeniy O. Pentsak ◽  
Vera A. Cherepanova ◽  
Evgeniy G. Gordeev ◽  
Valentine P. Ananikov

Defectiveness of carbon material surface is a key issue for many applications. Pd-nanoparticle SEM imaging was used to highlight “hidden” defects and analyzed by neural networks to solve order/disorder classification and defect segmentation tasks.


Sign in / Sign up

Export Citation Format

Share Document