RGD-Conjugated Dendrimer-Modified Gold Nanorods for in Vivo Tumor Targeting and Photothermal Therapy

2009 ◽  
Vol 7 (1) ◽  
pp. 94-104 ◽  
Author(s):  
Zhiming Li ◽  
Peng Huang ◽  
Xuejun Zhang ◽  
Jing Lin ◽  
Sen Yang ◽  
...  
2019 ◽  
Vol 86 ◽  
pp. 363-372 ◽  
Author(s):  
Liming Wu ◽  
Bingyi Lin ◽  
Huang Yang ◽  
Jing Chen ◽  
Zhengwei Mao ◽  
...  

2017 ◽  
Vol 114 (15) ◽  
pp. E3110-E3118 ◽  
Author(s):  
Moustafa R. K. Ali ◽  
Mohammad Aminur Rahman ◽  
Yue Wu ◽  
Tiegang Han ◽  
Xianghong Peng ◽  
...  

Gold nanorods (AuNRs)-assisted plasmonic photothermal therapy (AuNRs-PPTT) is a promising strategy for combating cancer in which AuNRs absorb near-infrared light and convert it into heat, causing cell death mainly by apoptosis and/or necrosis. Developing a valid PPTT that induces cancer cell apoptosis and avoids necrosis in vivo and exploring its molecular mechanism of action is of great importance. Furthermore, assessment of the long-term fate of the AuNRs after treatment is critical for clinical use. We first optimized the size, surface modification [rifampicin (RF) conjugation], and concentration (2.5 nM) of AuNRs and the PPTT laser power (2 W/cm2) to achieve maximal induction of apoptosis. Second, we studied the potential mechanism of action of AuNRs-PPTT using quantitative proteomic analysis in mouse tumor tissues. Several death pathways were identified, mainly involving apoptosis and cell death by releasing neutrophil extracellular traps (NETs) (NETosis), which were more obvious upon PPTT using RF-conjugated AuNRs (AuNRs@RF) than with polyethylene glycol thiol-conjugated AuNRs. Cytochrome c and p53-related apoptosis mechanisms were identified as contributing to the enhanced effect of PPTT with AuNRs@RF. Furthermore, Pin1 and IL18-related signaling contributed to the observed perturbation of the NETosis pathway by PPTT with AuNRs@RF. Third, we report a 15-month toxicity study that showed no long-term toxicity of AuNRs in vivo. Together, these data demonstrate that our AuNRs-PPTT platform is effective and safe for cancer therapy in mouse models. These findings provide a strong framework for the translation of PPTT to the clinic.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Hadiyah N. Green ◽  
Dmitry V. Martyshkin ◽  
Cynthia M. Rodenburg ◽  
Eben L. Rosenthal ◽  
Sergey B. Mirov

The mastery of active tumor targeting is a great challenge in near infrared photothermal therapy (NIRPTT). To improve efficiency for targeted treatment of malignant tumors, we modify the technique of conjugating gold nanoparticles to tumor-specific antibodies. Polyethylene glycol-coated (PEGylated) gold nanorods (GNRs) were fabricated and conjugated to an anti-EGFR antibody. We characterized the conjugation efficiency of the GNRs by comparing the efficiency of antibody binding and the photothermal effect of the GNRs before and after conjugation. We demonstrate that the binding efficiency of the antibodies conjugated to the PEGylated GNRs is comparable to the binding efficiency of the unmodified antibodies and 33.9% greater than PEGylated antibody-GNR conjugates as reported by Liao and Hafner (2005). In addition, cell death by NIRPTT was sufficient to kill nearly 90% of tumor cells, which is comparable to NIRPTT with GNRs alone confirming that NIRPTT using GNRs is not compromised by conjugation of GNRs to antibodies.


Author(s):  
Seungsoo Kim ◽  
Yun-Sheng Chen ◽  
Geoffrey P. Luke ◽  
Mohammad Mehrmohammadi ◽  
Jason R. Cook ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5235
Author(s):  
Galina M. Proshkina ◽  
Elena I. Shramova ◽  
Marya V. Shilova ◽  
Ivan V. Zelepukin ◽  
Victoria O. Shipunova ◽  
...  

Near-infrared phototherapy has great therapeutic potential for cancer treatment. However, for efficient application, in vivo photothermal agents should demonstrate excellent stability in blood and targeted delivery to pathological tissue. Here, we demonstrated that stable bovine serum albumin-coated gold mini nanorods conjugated to a HER2-specific designed ankyrin repeat protein, DARPin_9-29, selectively accumulate in HER2-positive xenograft tumors in mice and lead to a strong reduction in the tumor size when being illuminated with near-infrared light. The results pave the way for the development of novel DARPin-based targeted photothermal therapy of cancer.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Oshra Betzer ◽  
Rinat Ankri ◽  
Menachem Motiei ◽  
Rachela Popovtzer

A critical problem in the treatment of cancer is the inability to identify microsized tumors and treat them without normal tissue destruction. While surgical excision of tumors is highly effective, residual micrometastases and remaining positive margins are the main cause of recurrence. In this study, we propose a theranostic approach for the detection and therapy of head and neck cancer (HNC). We developed a plasmonic-based nanoplatform for combined, ultrasensitivein vivospectroscopic detection and targeted therapy of HNC. This detection method involves near-infrared (NIR) spectroscopy of gold nanorods (GNRs) that selectively target and attach to squamous cell carcinoma HNC cells, through an immune complex. Diagnosis is based on a spectral shift analysis, which is generated by interparticle-plasmon-resonance patterns of the specifically targeted GNRs. Additionally, the ability to design the GNRs to strongly absorb light in the NIR region enables efficient irradiation of these GNRs, for selective photothermal therapy (PTT) of the cancer cells. We expect this targeted, noninvasive, and nonionizing spectroscopic detection method to provide a highly sensitive and simple diagnostic tool for micrometastasis. In addition, the concomitant development of targeted PTT, based on specific cancer markers, may pave the way for tailoring effective therapy for patients, toward an era of personalized medicine.


Nanoscale ◽  
2018 ◽  
Vol 10 (18) ◽  
pp. 8536-8546 ◽  
Author(s):  
Daquan Wang ◽  
Lingjie Meng ◽  
Zhaofu Fei ◽  
Chen Hou ◽  
Jiangang Long ◽  
...  

Multi-layered single-walled carbon nanotubes, termed SWNT@BSA@Au-S-PEG-FA@DOX, which integrate photothermal therapy with small molecule drug delivery, were prepared using a facile layer-by-layer assembly process.


Nanomedicine ◽  
2015 ◽  
Vol 10 (11) ◽  
pp. 1723-1733 ◽  
Author(s):  
Robert CG Martin ◽  
Erica Locatelli ◽  
Yan Li ◽  
Weizhong Zhang ◽  
Suping Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document