Development of Lead Iodide Perovskite Solar Cells Using Three-Dimensional Titanium Dioxide Nanowire Architectures

ACS Nano ◽  
2015 ◽  
Vol 9 (1) ◽  
pp. 564-572 ◽  
Author(s):  
Yanhao Yu ◽  
Jianye Li ◽  
Dalong Geng ◽  
Jialiang Wang ◽  
Lushuai Zhang ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiao Wang ◽  
Kasparas Rakstys ◽  
Kevin Jack ◽  
Hui Jin ◽  
Jonathan Lai ◽  
...  

AbstractEfficient and stable perovskite solar cells with a simple active layer are desirable for manufacturing. Three-dimensional perovskite solar cells are most efficient but need to have improved environmental stability. Inclusion of larger ammonium salts has led to a trade-off between improved stability and efficiency, which is attributed to the perovskite films containing a two-dimensional component. Here, we show that addition of 0.3 mole percent of a fluorinated lead salt into the three-dimensional methylammonium lead iodide perovskite enables low temperature fabrication of simple inverted solar cells with a maximum power conversion efficiency of 21.1%. The perovskite layer has no detectable two-dimensional component at salt concentrations of up to 5 mole percent. The high concentration of fluorinated material found at the film-air interface provides greater hydrophobicity, increased size and orientation of the surface perovskite crystals, and unencapsulated devices with increased stability to high humidity.


Nano Letters ◽  
2013 ◽  
Vol 14 (1) ◽  
pp. 127-133 ◽  
Author(s):  
Joshua J. Choi ◽  
Xiaohao Yang ◽  
Zachariah M. Norman ◽  
Simon J. L. Billinge ◽  
Jonathan S. Owen

Chem ◽  
2021 ◽  
Author(s):  
Fei Zhang ◽  
Haipeng Lu ◽  
Bryon W. Larson ◽  
Chuanxiao Xiao ◽  
Sean P. Dunfield ◽  
...  

Author(s):  
Holger Röhm ◽  
Tobias Leonhard ◽  
Michael J. Hoffmann ◽  
Alexander Colsmann

Author(s):  
Luis Pazos-Outon ◽  
T. Patrick Xiao ◽  
Eli Yablonovitch

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2512
Author(s):  
Daming Zheng ◽  
Changheng Tong ◽  
Tao Zhu ◽  
Yaoguang Rong ◽  
Thierry Pauporté

During the past decade, the power conversion efficiency (PCE) of perovskite solar cells (PSCs) has risen rapidly, and it now approaches the record for single crystal silicon solar cells. However, these devices still suffer from a problem of stability. To improve PSC stability, two approaches have been notably developed: the use of additives and/or post-treatments that can strengthen perovskite structures and the use of a nontypical architecture where three mesoporous layers, including a porous carbon backcontact without hole transporting layer, are employed. This paper focuses on 5-ammonium valeric acid iodide (5-AVAI or AVA) as an additive in methylammonium lead iodide (MAPI). By combining scanning electron microscopy (SEM), X-ray diffraction (XRD), time-resolved photoluminescence (TRPL), current–voltage measurements, ideality factor determination, and in-depth electrical impedance spectroscopy (EIS) investigations on various layers stacks structures, we discriminated the effects of a mesoscopic scaffold and an AVA additive. The AVA additive was found to decrease the bulk defects in perovskite (PVK) and boost the PVK resistance to moisture. The triple mesoporous structure was detrimental for the defects, but it improved the stability against humidity. On standard architecture, the PCE is 16.9% with the AVA additive instead of 18.1% for the control. A high stability of TiO2/ZrO2/carbon/perovskite cells was found due to both AVA and the protection by the all-inorganic scaffold. These cells achieved a PCE of 14.4% in the present work.


2018 ◽  
Vol 9 (7) ◽  
pp. 1703-1711 ◽  
Author(s):  
Luis M. Pazos-Outón ◽  
T. Patrick Xiao ◽  
Eli Yablonovitch

Author(s):  
Yan Yang ◽  
Wangen Zhao ◽  
Tengteng Yang ◽  
Jiali Liu ◽  
Jingru Zhang ◽  
...  

Guanidinium thiocyanate was selected to modify the surface terminations of methylamine lead iodide (MAPbI3) perovskite films and a 21.26% PCE was acquired for a solar cell based on the MAPbI3 system, and the voltage deficit is reduced to 0.426 V.


Sign in / Sign up

Export Citation Format

Share Document