scholarly journals Effects of 5-Ammonium Valeric Acid Iodide as Additive on Methyl Ammonium Lead Iodide Perovskite Solar Cells

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2512
Author(s):  
Daming Zheng ◽  
Changheng Tong ◽  
Tao Zhu ◽  
Yaoguang Rong ◽  
Thierry Pauporté

During the past decade, the power conversion efficiency (PCE) of perovskite solar cells (PSCs) has risen rapidly, and it now approaches the record for single crystal silicon solar cells. However, these devices still suffer from a problem of stability. To improve PSC stability, two approaches have been notably developed: the use of additives and/or post-treatments that can strengthen perovskite structures and the use of a nontypical architecture where three mesoporous layers, including a porous carbon backcontact without hole transporting layer, are employed. This paper focuses on 5-ammonium valeric acid iodide (5-AVAI or AVA) as an additive in methylammonium lead iodide (MAPI). By combining scanning electron microscopy (SEM), X-ray diffraction (XRD), time-resolved photoluminescence (TRPL), current–voltage measurements, ideality factor determination, and in-depth electrical impedance spectroscopy (EIS) investigations on various layers stacks structures, we discriminated the effects of a mesoscopic scaffold and an AVA additive. The AVA additive was found to decrease the bulk defects in perovskite (PVK) and boost the PVK resistance to moisture. The triple mesoporous structure was detrimental for the defects, but it improved the stability against humidity. On standard architecture, the PCE is 16.9% with the AVA additive instead of 18.1% for the control. A high stability of TiO2/ZrO2/carbon/perovskite cells was found due to both AVA and the protection by the all-inorganic scaffold. These cells achieved a PCE of 14.4% in the present work.

Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 720 ◽  
Author(s):  
Hang Dong ◽  
Shangzheng Pang ◽  
Yi Zhang ◽  
Dazheng Chen ◽  
Weidong Zhu ◽  
...  

Due to the low temperature fabrication process and reduced hysteresis effect, inverted p-i-n structured perovskite solar cells (PSCs) with the PEDOT:PSS as the hole transporting layer and PCBM as the electron transporting layer have attracted considerable attention. However, the energy barrier at the interface between the PCBM layer and the metal electrode, which is due to an energy level mismatch, limits the electron extraction ability. In this work, an inorganic aluminum-doped zinc oxide (AZO) interlayer is inserted between the PCBM layer and the metal electrode so that electrons can be collected efficiently by the electrode. It is shown that with the help of the PCBM/AZO bilayer, the power conversion efficiency of PSCs is significantly improved, with negligible hysteresis and improved device stability. The UPS measurement shows that the AZO interlayer can effectively decrease the energy offset between PCBM and the metal electrode. The steady state photoluminescence, time-resolved photoluminescence, transient photocurrent, and transient photovoltage measurements show that the PSCs with the AZO interlayer have a longer radiative carrier recombination lifetime and more efficient charge extraction efficiency. Moreover, the introduction of the AZO interlayer could protect the underlying perovskite, and thus, greatly improve device stability.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 295
Author(s):  
Tianzhao Dai ◽  
Qiaojun Cao ◽  
Lifeng Yang ◽  
Mahmoud Aldamasy ◽  
Meng Li ◽  
...  

Perovskite solar cells (PSCs) have received a great deal of attention in the science and technology field due to their outstanding power conversion efficiency (PCE), which increased rapidly from 3.9% to 25.5% in less than a decade, comparable to single crystal silicon solar cells. In the past ten years, much progress has been made, e.g. impressive ideas and advanced technologies have been proposed to enlarge PSC efficiency and stability. However, this outstanding progress has always been referred to as small-area (<0.1 cm2) PSCs. Little attention has been paid to the preparation processes and their micro-mechanisms for large-area (>1 cm2) PSCs. Meanwhile, scaling up is an inevitable way for large-scale application of PSCs. Therefore, we firstly summarize the current achievements for high efficiency and stability large-area perovskite solar cells, including precursor composition, deposition, growth control, interface engineering, packaging technology, etc. Then we include a brief discussion and outlook for the future development of large-area PSCs in commercialization.


2020 ◽  
Vol 20 (3) ◽  
pp. 1892-1898 ◽  
Author(s):  
Kejie Dai ◽  
Xuan Zhao

The organometal halide perovskite (OHP) materials have attracted much attention throughout the world due to their superb optoelectronic properties. Tremendous progress has been made in the OHP based solar cells with increased efficiency from 3.8% to 24.2% within the last decade, benefiting from efforts in the photovoltaic field. However, all the OHP solar cells with highest efficient are based on a normal mesoporous structure with TiO2 at the bottom, which needs high temperature process. The inverted planar structure OHP solar cells based on PEDOT:PSS suffer from low efficiency (lower than 15%) and inferior stability due to degradation of PEDOT:PSS in ambient air. Herein, we employed sol–gel method to fabricate a NiOx nano film as the hole transporting layer for inverted OHP solar cells. The device performance based on PEDOT:PSS and NiOx were systematically investigated. It was found that the perovskite films on NiOx film had larger grain size and thus lower defects) density. The Capacitance–Voltage measurement indicated that the device based on NiOx exhibited larger built-in potential, which significantly enhanced the open-circuit potential of the OHP solar cells. Furthermore, the solar cell based on NiOx nano film exhibited excellent stability compared with the PEDOT:PSS based device, due to robust property of NiOx in ambient air.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 112
Author(s):  
Helen Hejin Park

Although power conversion efficiencies of organic-inorganic lead halide perovskite solar cells (PSCs) are approaching those of single-crystal silicon solar cells, the working device stability due to internal and external factors, such as light, temperature, and moisture, is still a key issue to address. The current world-record efficiency of PSCs is based on organic hole transport materials, which are usually susceptible to degradation from heat and diffusion of dopants. A simple solution would be to replace the generally used organic hole transport layers (HTLs) with a more stable inorganic material. This review article summarizes recent contributions of inorganic hole transport materials to PSC development, focusing on aspects of device performance and long-term stability. Future research directions of inorganic HTLs in the progress of PSC research and challenges still remaining will also be discussed.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Muhammad Imran Ahmed ◽  
Amir Habib ◽  
Syed Saad Javaid

Heralded as a major scientific breakthrough of 2013, organic/inorganic lead halide perovskite solar cells have ushered in a new era of renewed efforts at increasing the efficiency and lowering the cost of solar energy. As a potential game changer in the mix of technologies for alternate energy, it has emerged from a modest beginning in 2012 to efficiencies being claimed at 20.1% in a span of just two years. This remarkable progress, encouraging at one end, also points to the possibility that the potential may still be far from being fully realized. With greater insight into the photophysics involved and optimization of materials and methods, this technology stands to match or even exceed the efficiencies for single crystal silicon solar cells. With thin film solution processability, applicability to flexible substrates, and being free of liquid electrolyte, this technology combines the benefits of Dye Sensitized Solar Cells (DSSCs), Organic Photovoltaics (OPVs), and thin film solar cells. In this review we present a brief historic perspective to this development, take a cognizance of the current state of the art, and highlight challenges and the opportunities.


Author(s):  
Holger Röhm ◽  
Tobias Leonhard ◽  
Michael J. Hoffmann ◽  
Alexander Colsmann

Author(s):  
Luis Pazos-Outon ◽  
T. Patrick Xiao ◽  
Eli Yablonovitch

Solar RRL ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 2000801
Author(s):  
Mohammad Mahdi Tavakoli ◽  
Riccardo Po ◽  
Gabriele Bianchi ◽  
Chiara Carbonera ◽  
Jing Kong

Sign in / Sign up

Export Citation Format

Share Document