methylammonium lead iodide
Recently Published Documents


TOTAL DOCUMENTS

431
(FIVE YEARS 207)

H-INDEX

60
(FIVE YEARS 10)

Author(s):  
Jiaxun Liu ◽  
Juan Du ◽  
Anthony E Phillips ◽  
Peter B Wyatt ◽  
David A Keen ◽  
...  

Abstract We report the results of a neutron powder diffraction study of the phase transitions in deuterated methylammonium lead iodide, with a focus on the system of orientational distortions of the framework of PbI6 octahedra. The results are analysed in terms of symmetry-adapted lattice strains and normal mode distortions. The higher-temperature cubic–tetragonal phase transition at 327 K is weakly discontinuous and nearly tricritical. The variations of rotation angles and spontaneous strains with temperature are consistent with a standard Landau theory treatment. The lower-temperature transition to the orthorhombic phase at 165 K is discontinuous, with two systems of octahedral rotations and internal distortions that together can be described by five order parameters of different symmetry. In this paper we quantify the various symmetry breaking distortions and their variation with temperature, together with their relationship to the spontaneous strains, within the formalism of Landau theory. A number of curious results in the low-temperature phase are identified, particularly regarding distortion amplitudes that decrease rather than increase with lowering temperature.


2022 ◽  
Vol 9 ◽  
Author(s):  
Jinming Wu ◽  
Yongqiang Zhang ◽  
Shuang Yang ◽  
Zhaolai Chen ◽  
Wei Zhu

Metal halide perovskite single-crystal detectors have attracted increasing attention due to the advantages of low noise, high sensitivity, and fast response. However, the narrow photoresponse range of widely investigated lead-based perovskite single crystals limit their application in near-infrared (NIR) detection. In this work, tin (Sn) is incorporated into methylammonium lead iodide (MAPbI3) single crystals to extend the absorption range to around 950 nm. Using a space-confined strategy, MAPb0.5Sn0.5I3 single-crystal thin films with a thickness of 15 μm is obtained, which is applied for sensitive NIR detection. The as-fabricated detectors show a responsivity of 0.514 A/W and a specific detectivity of 1.4974×1011 cmHz1/2/W under 905 nm light illumination and –1V. Moreover, the NIR detectors exhibit good operational stability (∼30000 s), which can be attributed to the low trap density and good stability of perovskite single crystals. This work demonstrates an effective way for sensitive NIR detection.


Author(s):  
Wenhao Zhang ◽  
Jiankang Du ◽  
Weihua Zhang ◽  
Yanmeng Chu ◽  
Anyi Mei ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
pp. 351
Author(s):  
Lilik Hasanah ◽  
Adryan Ashidiq ◽  
Roer Eka Pawinanto ◽  
Budi Mulyanti ◽  
Chandra Wulandari ◽  
...  

Perovskite solar cells (PSC) are currently exhibiting reproducible high efficiency, low-cost manufacturing, and scalable electron transport layers (ETL), which are becoming increasingly important. The application of photonic crystals (PC) on solar cells has been proven to enhance light harvesting and lead solar cells to adjust the propagation and distribution of photons. In this paper, the optimization of a two-dimensional nanodisk PC introduced in ETL with an organic-inorganic lead-iodide perovskite (methylammonium lead-iodide, MAPbI3) as the absorber layer was studied. A finite-difference time-domain (FDTD) simulation was used to evaluate the optical performance of PSC with various lattice constants and a radius of nanodisk photonic crystals. According to the simulation, the optimum lattice constant and PC radius applied to ETL are 500 nm and 225 nm, respectively. This optimum design enhances PSC absorption performance by more than 94% of incident light.


2021 ◽  
Author(s):  
Annik Bernhardt ◽  
Tharushi Ambagaspitiya ◽  
Martin Kordesch ◽  
Katherine Cimatu ◽  
Jixin Chen

Mixed halide lead perovskite such as methylammonium lead iodide bromides MAPb(BrxI1-x)3 have emerged as one of the most promising materials of future solar cells, offering high power conversion efficiencies and bandgap tunability. Among other factors, the reversible phase segregation under even low light intensities is still limiting their potential use. During this process, the material segregates locally into iodide-rich and bromide-rich phases, lowering the effective bandgap energy. While several studies have been done to illuminate the mechanism and suppression of phase segregation, fundamental aspects remain unclear. Phase compositions after segregation vary extensively between different studies and the exact amounts of phases often remain unmentioned. For iodide-rich phases, the end-point compositions at around x=0.2 are widely accepted but the proportion of the phase is difficult to measure. In this report, we observe the phase segregation using spectroscopic ellipsometry, a powerful, nondestructive technique that has been employed in the study of film degradation before. We obtained dynamic ellipsometric measurements from x=0.5 mixed halide lead perovskite thin films protected by a polystyrene layer under green laser light with a power density of ~11 W/cm2. Changes in the bandgap region can be correlated to the changes in composition caused by phase segregation, allowing for the kinetics to be observed. Time constants between 1.7(± 0.7)×10-3 s-1 for the segregation and 1.5(± 0.6)×10-4 s-1 for recovery were calculated. We expect ellipsometry to serve as a complementary technique to other spectroscopies in studying mixed-halide lead perovskites phase segregation in the future.


Author(s):  
Jawad Ali Shah Syed ◽  
Danish Khan ◽  
Waseem Ahmad ◽  
Ghulam Sarwar Soomro ◽  
Afzal Ahmed Dar

2021 ◽  
Vol 9 ◽  
Author(s):  
Oleksandra Shargaieva ◽  
Hampus Näsström ◽  
Jinzhao Li ◽  
Daniel M. Többens ◽  
Eva L. Unger

Hybrid perovskites are a novel type of semiconductors that show great potential for solution-processed optoelectronic devices. For all applications, the device performance is determined by the quality of the solution-processed perovskite thin films. During solution processing, the interaction of solvent with precursor molecules often leads to the formation of solvate intermediate phases that may diverge the crystallization pathway from simple solvent evaporation to a multi-step formation process. We here investigate the crystallization of methylammonium lead iodide (MAPbI3) from a range of commonly utilized solvents, namely dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF), N-methylpyrrolidone (NMP), and gamma-butyrolactone (GBL) at different temperatures ranging from 40°C to >100°C by in-situ grazing-incidence wide-angle X-ray scattering (GIWAXS) measurements. For all solvents but GBL, we clearly observe the formation of solvate-intermediate phases at moderate processing temperatures. With increasing temperatures, an increasing fraction of the MAPbI3 perovskite phase is observed to form directly. From the temperature-dependence of the phase-formation and phase-decomposition rates, the activation energy to form the MAPbI3 perovskite phase from the solvate-phases are determined as a quantitative metric for the binding strength of the solvent within the solvate-intermediate phases and we observe a trend of DMSO > DMF > NMP > GBL. These results enable prediction of processing temperatures at which solvent molecules can be effectively removed.


Sign in / Sign up

Export Citation Format

Share Document