Cooptimization of growth parameters in glycerol mediated mixotrophic cultivation of microalgae in a bubble column photobioreactor

Author(s):  
Prof. Saikat Chakraborty ◽  
Sreyashi Ghosh
Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 643
Author(s):  
Konstantin Chekanov ◽  
Daniil Litvinov ◽  
Tatiana Fedorenko ◽  
Olga Chivkunova ◽  
Elena Lobakova

Carotenoids astaxanthin and β-carotene are widely used natural antioxidants. They are key components of functional food, cosmetics, drugs and animal feeding. They hold leader positions on the world carotenoid market. In current work, we characterize the new strain of the green microalga Bracteacoccus aggregatus BM5/15 and propose the method of its culturing in a bubble-column photobioreactor for simultaneous production of astaxanthin and β-carotene. Culture was monitored by light microscopy and pigment kinetics. Fatty acid profile was evaluated by tandem gas-chromatography–mass spectrometry. Pigments were obtained by the classical two-stage scheme of autotrophic cultivation. At the first, vegetative, stage biomass accumulation occurred. Maximum specific growth rate and culture productivity at this stage were 100–200 mg∙L−1∙day−1, and 0.33 day−1, respectively. At the second, inductive, stage carotenoid synthesis was promoted. Maximal carotenoid fraction in the biomass was 2.2–2.4%. Based on chromatography data, astaxanthin and β-carotene constituted 48 and 13% of total carotenoid mass, respectively. Possible pathways of astaxanthin synthesis are proposed based on carotenoid composition. Collectively, a new strain B. aggregatus BM5/15 is a potential biotechnological source of two natural antioxidants, astaxanthin and β-carotene. The results give the rise for further works on optimization of B. aggregatus cultivation on an industrial scale.


2008 ◽  
Vol 39 (3) ◽  
pp. 575-580 ◽  
Author(s):  
Reza Ranjbar ◽  
Ryota Inoue ◽  
Hironori Shiraishi ◽  
Tomohisa Katsuda ◽  
Shigeo Katoh

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1610
Author(s):  
Branka Vinterhalter ◽  
Nevena Banjac ◽  
Dragan Vinterhalter ◽  
Dijana Krstić-Milošević

The hairy root clones of Gentiana dinarica cl-B, cl-D, cl-3, and cl-14 were cultivated in parallel in diverse simple bioreactors, including temporary immersion systems RITA® (TIS RITA®), bubble column bioreactors (BCB), and Erlenmeyer flasks (EF), and evaluated for biomass production and xanthone content. The obtained results showed that TIS RITA® and BCB containing ½ MS medium with 4% sucrose provided equally good growth conditions in which the majority of the clones displayed the higher percentage of dry matter (DM%), and xanthones norswertianin-1-O-primeveroside (nor-1-O-prim) and norswertianin production than those cultivated in EF. Thin and well branched hairy root clone cl-B grown in BCB for 7 weeks was superior regarding all growth parameters tested, including growth index (19.97), dry weight (2.88 g), and DM% (25.70%) compared to all other clones. Cl-B cultured in TIS RITA® contained the highest amount of nor-1-O-prim (56.82 mg per vessel). In BCB with constant aeration, cl-B accumulated the highest norswertianin content reaching 18.08 mg/vessel. The optimized conditions for cultivation of selected G. dinarica hairy root clones in highly aerated TIS RITA® and BCB systems contribute to the development of bioreactor technology designed for the large scale commercial production of xanthones nor-1-O-prim and norswertianin.


Sign in / Sign up

Export Citation Format

Share Document