carotenoid synthesis
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 22)

H-INDEX

32
(FIVE YEARS 4)

2021 ◽  
Vol 12 ◽  
Author(s):  
Shun Tamaki ◽  
Ryosuke Sato ◽  
Yuki Koshitsuka ◽  
Masashi Asahina ◽  
Yutaka Kodama ◽  
...  

Carotenoids are photosynthetic pigments and hydrophobic antioxidants that are necessary for the survival of photosynthetic organisms, including the microalga Euglena gracilis. In the present study, we identified an uncharacterized gene encoding the E. gracilis β-carotene synthetic enzyme lycopene cyclase (EgLCY) and discovered a relationship between EgLCY-mediated carotenoid synthesis and the reactive oxygen species (ROS) scavenging system ascorbate-glutathione cycle. The EgLCY cDNA sequence was obtained via homology searching E. gracilis transcriptome data. An enzyme assay using Escherichia coli demonstrated that EgLCY converts lycopene to β-carotene. E. gracilis treated with EgLCY double-stranded RNA (dsRNA) produced colorless cells with hypertrophic appearance, inhibited growth, and marked decrease in carotenoid and chlorophyll content, suggesting that EgLCY is essential for the synthesis of β-carotene and downstream carotenoids, which are abundant and physiologically functional. In EgLCY dsRNA-treated cells, the ascorbate-glutathione cycle, composed of ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDAR), and glutathione reductase (GR), was unusually modulated; APX and GR activities significantly decreased, whereas DHAR and MDAR activities increased. Ascorbate content was significantly increased and glutathione content significantly decreased in EgLCY dsRNA-treated cells and was correlated with their recycling enzyme activities. Fluorescent imaging demonstrated that EgLCY dsRNA-treated cells accumulated higher levels of H2O2 compared to wild-type cells. Taken together, this study revealed that EgLCY-mediated synthesis of β-carotene and downstream carotenoid species upregulates APX activity and increases glutathione pool size for H2O2 scavenging. Our study suggests a possible relationship between carotenoid synthesis and the ascorbate-glutathione cycle for ROS scavenging in E. gracilis.


2021 ◽  
Author(s):  
Daniela Arias ◽  
Angélica Ortega ◽  
Christian González ◽  
Luis Felipe Quiroz ◽  
Jordi Moreno-Romero ◽  
...  

AbstractLight stimulates carotenoid synthesis in plants during photomorphogenesis through the expression of PHYTOENE SYNTHASE (PSY), a key gene in carotenoid biosynthesis. The orange Daucus carota (carrot) synthesizes and accumulates high amounts of carotenoids in the taproot that grows underground. Contrary to other organs, light impairs carrot taproot development and represses the expression of carotenogenic genes such as DcPSY1 and DcPSY2 reducing carotenoid accumulation. By means of an RNA-seq, in previous analysis we observed that carrot PHYTOCHROME RAPIDLY REGULATED 1 (DcPAR1) is more expressed in the underground grown taproot respect to those grown in light. PAR1 is a transcriptional cofactor with a negative role in the shade avoidance syndrome regulation in Arabidopsis thaliana through the dimerization with PHYTOCHROME INTERACTING FACTORs (PIFs), allowing a moderate synthesis of carotenoids. Here we show that overexpressing AtPAR1 in carrot produces an increment of carotenoids in taproots grown underground as well as higher DcPSY1 expression. The high identity of AtPAR1 and DcPAR1 let us to suggest a functional role of DcPAR1 that was verified through the in vivo binding to AtPIF7 and the overexpression in Arabidopsis, where it increments AtPSY expression and carotenoid accumulation together with a photomorphogenic phenotype. Finally, DcPAR1 antisense carrot lines presented a dramatic decrease in carotenoids levels and in the relative expression of key carotenogenic genes as well as impairment in taproot development. These results let us to propose that DcPAR1 is a key factor for secondary root development, plastid differentiation and carotenoid synthesis in carrot taproot grown underground.One-sentence summaryDcPAR1 is a key factor for secondary root development, plastid differentiation and carotenoid synthesis in carrot taproot grown underground.


Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 643
Author(s):  
Konstantin Chekanov ◽  
Daniil Litvinov ◽  
Tatiana Fedorenko ◽  
Olga Chivkunova ◽  
Elena Lobakova

Carotenoids astaxanthin and β-carotene are widely used natural antioxidants. They are key components of functional food, cosmetics, drugs and animal feeding. They hold leader positions on the world carotenoid market. In current work, we characterize the new strain of the green microalga Bracteacoccus aggregatus BM5/15 and propose the method of its culturing in a bubble-column photobioreactor for simultaneous production of astaxanthin and β-carotene. Culture was monitored by light microscopy and pigment kinetics. Fatty acid profile was evaluated by tandem gas-chromatography–mass spectrometry. Pigments were obtained by the classical two-stage scheme of autotrophic cultivation. At the first, vegetative, stage biomass accumulation occurred. Maximum specific growth rate and culture productivity at this stage were 100–200 mg∙L−1∙day−1, and 0.33 day−1, respectively. At the second, inductive, stage carotenoid synthesis was promoted. Maximal carotenoid fraction in the biomass was 2.2–2.4%. Based on chromatography data, astaxanthin and β-carotene constituted 48 and 13% of total carotenoid mass, respectively. Possible pathways of astaxanthin synthesis are proposed based on carotenoid composition. Collectively, a new strain B. aggregatus BM5/15 is a potential biotechnological source of two natural antioxidants, astaxanthin and β-carotene. The results give the rise for further works on optimization of B. aggregatus cultivation on an industrial scale.


Author(s):  
Oday Alrifai ◽  
Xiuming Hao ◽  
Ronghua Liu ◽  
Zhanhui Lu ◽  
Massimo F. Marcone ◽  
...  

2021 ◽  
Author(s):  
Di Dong ◽  
Ke Teng ◽  
Penghui Tan ◽  
Zhuocheng Liu ◽  
Zhuoxiong Yang ◽  
...  

Abstract Phytoene synthase (Psy) is a key limiting enzyme in the carotenoid biosynthesis pathway by regulating phytoene synthesis. In this study, ZjPSY was isolated and identified from an important lawn grass species, Zoysia japonica. ZjPSY cDNA was 1230 bp in length, corresponding to 409 amino acids. ZjPSY showed higher expression in young leaves and were down-regulated after GA3, ABA, SA, and MeJA treatments, exhibited a sensitivity to hormones. By analysis of cis-regulatory elements in ZjPSY promoter region, ZjPSY exhibited be regulated of light and multiple hormones. To investigate the functions of ZjPSY, the plant expression vector was constructed to obtain transgenic Arabidopsis thaliana. Overexpression of ZjPSY protein led to carotenoid accumulation and altered expression of genes involved in carotenoid contents. ZjPSY expressing Arabidopsis thaliana exhibited yellowing and dwarfing phenotypes and contained more carotenoids than the wild type. Yeast two-hybrid screening identified a novel interacting partner of ZjPSY, ZjJ2 (DNAJ homologue 2), which encodes heat-shock protein 40 (HSP40). Taken together, this study suggests that ZjPSY plays an important role in carotenoid synthesis, leaf color development and hormone response in transgenic plants. These results broadened the understanding of carotenoid synthesis pathways and laid a foundation for the exploration and utilization of PSY gene.


2021 ◽  
Vol 22 (3) ◽  
pp. 1184
Author(s):  
Rocio Quian-Ulloa ◽  
Claudia Stange

Light is an important cue that stimulates both plastid development and biosynthesis of carotenoids in plants. During photomorphogenesis or de-etiolation, photoreceptors are activated and molecular factors for carotenoid and chlorophyll biosynthesis are induced thereof. In fruits, light is absorbed by chloroplasts in the early stages of ripening, which allows a gradual synthesis of carotenoids in the peel and pulp with the onset of chromoplasts’ development. In roots, only a fraction of light reaches this tissue, which is not required for carotenoid synthesis, but it is essential for root development. When exposed to light, roots start greening due to chloroplast development. However, the colored taproot of carrot grown underground presents a high carotenoid accumulation together with chromoplast development, similar to citrus fruits during ripening. Interestingly, total carotenoid levels decrease in carrots roots when illuminated and develop chloroplasts, similar to normal roots exposed to light. The recent findings of the effect of light quality upon the induction of molecular factors involved in carotenoid synthesis in leaves, fruit, and roots are discussed, aiming to propose consensus mechanisms in order to contribute to the understanding of carotenoid synthesis regulation by light in plants.


Sign in / Sign up

Export Citation Format

Share Document