scholarly journals Use of mechanistic modeling in process development for lentiviral vector purification

Author(s):  
Koley Sushmita ◽  
Scott Altern ◽  
Ronit Ghosh ◽  
Steven Cramer
2018 ◽  
Vol 18 (6) ◽  
pp. 3352-3359 ◽  
Author(s):  
Manu Garg ◽  
Milan Roy ◽  
Paresh Chokshi ◽  
Anurag S. Rathore

2021 ◽  
Vol 7 (9) ◽  
pp. 1037-1046
Author(s):  
Nolan Sutherland ◽  
Lesley Chan ◽  
Kelly Kral ◽  
Franziska Bollmann

Author(s):  
P. B. Basham ◽  
H. L. Tsai

The use of transmission electron microscopy (TEM) to support process development of advanced microelectronic devices is often challenged by a large amount of samples submitted from wafer fabrication areas and specific-spot analysis. Improving the TEM sample preparation techniques for a fast turnaround time is critical in order to provide a timely support for customers and improve the utilization of TEM. For the specific-area sample preparation, a technique which can be easily prepared with the least amount of effort is preferred. For these reasons, we have developed several techniques which have greatly facilitated the TEM sample preparation.For specific-area analysis, the use of a copper grid with a small hole is found to be very useful. With this small-hole grid technique, TEM sample preparation can be proceeded by well-established conventional methods. The sample is first polished to the area of interest, which is then carefully positioned inside the hole. This polished side is placed against the grid by epoxy Fig. 1 is an optical image of a TEM cross-section after dimpling to light transmission.


Author(s):  
C.K. Wu ◽  
P. Chang ◽  
N. Godinho

Recently, the use of refractory metal silicides as low resistivity, high temperature and high oxidation resistance gate materials in large scale integrated circuits (LSI) has become an important approach in advanced MOS process development (1). This research is a systematic study on the structure and properties of molybdenum silicide thin film and its applicability to high performance LSI fabrication.


2016 ◽  
Author(s):  
Ciro Menale ◽  
Francesca Schena ◽  
Lorenzo Diomede ◽  
Lucia Sergi Sergi ◽  
Lucia Susani ◽  
...  

2020 ◽  
Author(s):  
Ada Admin ◽  
Fabio Russo ◽  
Antonio Citro ◽  
Giorgia Squeri ◽  
Francesca Sanvito ◽  
...  

The induction of antigen (Ag)-specific tolerance represents a therapeutic option for autoimmune diabetes. We demonstrated that administration of lentiviral vector enabling expression of insulinB9-23 (LV.InsB) in hepatocytes, arrests β cell destruction in pre-diabetic NOD mice, by generating InsB9-23-specific FoxP3+T regulatory cells (Tregs). LV.InsB in combination with a suboptimal dose of anti-CD3 mAb (combined therapy, 1X5µg CT5) reverts diabetes and prevents recurrence of autoimmunity following islets transplantation in ~50% of NOD mice. We investigated whether CT optimization could lead to abrogation of recurrence of autoimmunity. Therefore, allo-islets were transplanted after optimized CT tolerogenic conditioning (1X25µg CT25). Diabetic NOD mice conditioned with CT25 when glycaemia was <500mg/dL, remained normoglycaemic for 100 days after allo-islets transplantation, displayed reduced insulitis, but independently from the graft. Accordingly, cured mice showed T cell unresponsiveness to InsB9-23 stimulation and increased Tregs frequency in islets infiltration and pancreatic LN. Additional studies revealed a complex mechanism of Ag-specific immune regulation driven by CT25, in which both Tregs and PDL1 co-stimulation cooperate to control diabetogenic cells, while transplanted islets play a crucial role, although transient, recruiting diabetogenic cells. Therefore, CT25 before allo-islets transplantation represents an Ag-specific immunotherapy to resolve autoimmune diabetes in the presence of residual endogenous β cell mass.


Sign in / Sign up

Export Citation Format

Share Document