The effect of nitrogen atom on double bond pyramidalization

2004 ◽  
Vol 34 (7) ◽  
pp. 477-481 ◽  
Author(s):  
Recep Özen ◽  
Kutalmis Guven ◽  
Hatice Can ◽  
Metin Balci
Keyword(s):  
1989 ◽  
Vol 54 (12) ◽  
pp. 3245-3252 ◽  
Author(s):  
Bernard Tinant ◽  
Janine Dupont-Fenfau ◽  
Jean-Paul Declercq ◽  
Jaroslav Podlaha ◽  
Otto Exner

Configuration on the C=N double bond of amidines and amidoximes is controlled by steric effects on the second nitrogen atom but there is a difference in the case of N’-monosubstituted derivatives: amidines prefer E configuration (conformation around the C-N bond sp) and amidoximes Z configuration (conformation ap). This was confirmed by the X-ray structures of two analogous model compounds N,N’-dimethyl-4-nitrobenzamidine (monoclinic, P21c, a = 10.855(3), b = 11.043(3), c = 8.593(3) Å, β = 105.69(2)°, V = 991.8(5) Å3, Z = 4, Dx = 1.29 g cm-3, CuKα, λ = 1.5418 Å, μ = 7.91 cm-1, F(000) = 408, T = 291 K, R = 0.065 for 1 265 observed reflections) and N’-methyl-4-nitrobenzamidoxime (monoclinic, P21/a, a = 6.699(2), b = 24.178(9), c = 6.075(2) Å, β = 106.20(3)°, V = 944.9(6) Å3, Z = 4, Dx = 1.37 g cm-3, CuKα, λ = 1.5418 Å, μ =9.22 cm-1, F(000) = 408, T = 291 K, R = 0.079 for 1 278 observed reflections).


1952 ◽  
Vol 30 (12) ◽  
pp. 915-921 ◽  
Author(s):  
G. S. Trick ◽  
C. A. Winkler

The reaction of nitrogen atoms with propylene has been found to produce hydrogen cyanide and ethylene as the main products, together with smaller amounts of ethane and propane and traces of acetylene and of a C4 fraction. With excess propylene, the nitrogen atoms were completely consumed and for the reaction at 242 °C., 0.77 mole of ethylene was produced for each mole of excess propylene added. For reactions at lower temperatures, less ethylene was produced. The proposed mechanism involves formation of a complex between the nitrogen atom and the double bond of propylene, followed by decomposition to ethylene, hydrogen cyanide, and atomic hydrogen. The ethylene would then react with atomic nitrogen in a similar manner.


2004 ◽  
Vol 57 (6) ◽  
pp. 583
Author(s):  
Paul V. Bernhardt ◽  
Raymond M. Carman ◽  
Roger P. C. Derbyshire
Keyword(s):  

Attempts to ring-close the nitrogen atom of 8-amino-p-menth-1-ene and of N-substituted 8-amino-p-menth-1-enes onto the C1–C2 double-bond carbons has led to a range of bicyclo[2.2.2] and bicyclo[3.2.1] products, together with the novel bicyclo[4.3.1]-1,3-oxazepine 9.


1984 ◽  
Vol 39 (1) ◽  
pp. 107-110 ◽  
Author(s):  
W. Hiller ◽  
J. Strähle ◽  
H. Prinz ◽  
K. Dehnicke

The X-ray structure of PPh3Me[NbOCl4(CH3CN)] at 210 K was solved (space group P1̄, two formula units per unit cell, a = 1173.5(5), b = 1130.1(4), c = 946.8(3) pm, α = 97.70(4), β = 93.57(3), γ = 78.62(3)°, 3688 inde­pendent reflexions, R = 0.025). The material consists of cations [P(C6H5)3CH3]⊕ and anions [NbOCl4(CH3CN)]⊖. The nitrogen atom of the acetonitrile solvate molecule is coordinated to the niobium centre in the trans-position to the oxo ligand; the NbO bond length of 169 pm corresponds to a double bond.


2015 ◽  
Vol 10 (12) ◽  
pp. 1934578X1501001 ◽  
Author(s):  
Zhong-Tang Zhang ◽  
Xi-Xian Jian ◽  
Jia-Yu Ding ◽  
Hong-Ying Deng ◽  
Ruo-Bing Chao ◽  
...  

The cardiac effect of thirty-eight diterpenoid alkaloids was evaluated on the isolated bullfrog heart model. Among them, twelve compounds exhibited appreciable cardiac activity, with compounds 3 and 35 being more active than the reference drug lanatoside. The structure-cardiac activity relationships of the diterpenoid alkaloids were summarized based on our present and previous studies [2]: i) 1α-OMe or 1α-OH, 8-OH, 14-OH, and NH (or NMe) are key structural features important for the cardiac effect of the aconitine-type C19-diterpenoid alkaloids without any esters. C18-diterpenoid alkaloids, lycoctonine-type C19-diterpenoid alkaloids, and the veatchine- and denudatine-type C20-diterpenoid alkaloids did not show any cardiac activity; ii) the presence of 3α-OH is beneficial to the cardiac activity; iii) the effect on the cardiac action of 6α-OMe, 13-OH, 15α-OH, and 16-demethoxy or a double bond between C-15 and C-16 depends on the substituent pattern on the nitrogen atom.


Synlett ◽  
2017 ◽  
Vol 28 (16) ◽  
pp. 2143-2146 ◽  
Author(s):  
Fuyuhiko Inagaki ◽  
Shisen Hira ◽  
Chisato Mukai

The silver(I)-catalyzed deprenylation of sulfonamide bearing prenyl functional groups on the nitrogen atom has been developed. In this reaction, the prenyl moiety was selectively eliminated without allyl or benzyl cleavage on the nitrogen atom. In addition, geranyl was also applicable for this elimination reaction. Furthermore, sulfonamide possessing two prenyl groups underwent a double deprenylation to form the corresponding deprenylated sulfonamide. Thus, a novel reactivity between the silver cation and double bond was observed.


1964 ◽  
Vol 42 (11) ◽  
pp. 2584-2594 ◽  
Author(s):  
W. A. Szarek ◽  
K. A. H. Adams ◽  
M. Curcumelli-Rodostamo ◽  
D. B. MacLean

Annotine, C16H21O3N, is shown to be pentacyclic and to contain a tertiary hydroxyl group, a lactone function, a tertiary nitrogen atom, and a dialkylated double bond. The position of the double bond and the tertiary hydroxyl group relative to the nitrogen atom has been established by Emde degradation of annotine methiodide. The presence of a lactone function is inferred from the reduction of annotine to dihydroannotinol, a hemiacetal, which reacts with 1 mole of ethyl mercaptan. The reduction of the lactone to a diol in an annotine derivative has been carried out. The chemical studies and the examination of annotine and its derivatives by modern instrumental methods allow the assignment of a plausible structure to the alkaloid.


1994 ◽  
Vol 49 (8) ◽  
pp. 1059-1062 ◽  
Author(s):  
İzzet A. Mour ◽  
Saim Ozkar ◽  
Cornelius G. Kreiter

Photolysis of hexacarbonyl-chromium(0), -molybdenum(0), and -tungsten(0) in presence of fumaronitrile yields at room temperature pentacarbonyl-fumaronitrile-chromium(0) (1), - molybdenum(0) (2), and -tungsten(0) (3). The complexes were purified by crystallization and characterized by IR and 13C-NMR spectroscopy. The fumaronitrile ligand is bonded to the M(CO)5 moiety by one nitrile nitrogen atom rather than by the carbon-carbon double bond. In toluene 2 dissociates into fumaronitrile and pentacarbonyl-molybdenum(0), which is stabi­lized by the solvent. Fumaronitrile and solvated pentacarbonyl-molybdenum(0) exist in solu­tion together with 2 in an equilibrium which lies in favour of the former species.


1958 ◽  
Vol 11 (3) ◽  
pp. 302 ◽  
Author(s):  
J Miller ◽  
AJ Parker

The substituent effects in aromatic nucleophilic substitution of groups attached to the benzene ring by a multiple-bond nitrogen atom are considered. Attachment is para to a replaceable halogen atom, and generally as a 4-substituent to l-chloro-2-nitrobenzene. Comparisons with some other groups are shown. Reasons are given for the greater T effect of a triple than of a double bond. Hammett substituent constants (σ*) are computed. Those for the nitroso and diazonium groups .are the largest so far obtained for electrically neutral and cationic groups respectively. The activating power of four of the nitrogen groups in electrophilic as well as nucleophilic substitution is discussed briefly.


Sign in / Sign up

Export Citation Format

Share Document