Differences in Behavioral Parameters of Long-Term Pain in Formalin Test at the Period of Sex Maturation in Prenatally Stressed Female and Male Rats

2003 ◽  
Vol 39 (6) ◽  
pp. 667-674
Author(s):  
I. P. Butkevich ◽  
E. A. Vershinina ◽  
V. A. Mikhailenko ◽  
M. N. Leontieva
2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Mayarling Francisca Troncoso ◽  
Mario Pavez ◽  
Carlos Wilson ◽  
Daniel Lagos ◽  
Javier Duran ◽  
...  

Abstract Background Testosterone regulates nutrient and energy balance to maintain protein synthesis and metabolism in cardiomyocytes, but supraphysiological concentrations induce cardiac hypertrophy. Previously, we determined that testosterone increased glucose uptake—via AMP-activated protein kinase (AMPK)—after acute treatment in cardiomyocytes. However, whether elevated glucose uptake is involved in long-term changes of glucose metabolism or is required during cardiomyocyte growth remained unknown. In this study, we hypothesized that glucose uptake and glycolysis increase in testosterone-treated cardiomyocytes through AMPK and androgen receptor (AR). Methods Cultured cardiomyocytes were stimulated with 100 nM testosterone for 24 h, and hypertrophy was verified by increased cell size and mRNA levels of β-myosin heavy chain (β-mhc). Glucose uptake was assessed by 2-NBDG. Glycolysis and glycolytic capacity were determined by measuring extracellular acidification rate (ECAR). Results Testosterone induced cardiomyocyte hypertrophy that was accompanied by increased glucose uptake, glycolysis enhancement and upregulated mRNA expression of hexokinase 2. In addition, testosterone increased AMPK phosphorylation (Thr172), while inhibition of both AMPK and AR blocked glycolysis and cardiomyocyte hypertrophy induced by testosterone. Moreover, testosterone supplementation in adult male rats by 5 weeks induced cardiac hypertrophy and upregulated β-mhc, Hk2 and Pfk2 mRNA levels. Conclusion These results indicate that testosterone stimulates glucose metabolism by activation of AMPK and AR signaling which are critical to induce cardiomyocyte hypertrophy.


2013 ◽  
Vol 56 (5) ◽  
pp. 1102-1109 ◽  
Author(s):  
Xiujing Cao ◽  
Shenghai Huang ◽  
Jiejie Cao ◽  
Tingting Chen ◽  
Ping Zhu ◽  
...  

1999 ◽  
Vol 50 (3) ◽  
pp. 193-199 ◽  
Author(s):  
Reuben W Rhees ◽  
Hamid N Al-Saleh ◽  
Edward W Kinghorn ◽  
Donovan E Fleming ◽  
Edwin D Lephart

2016 ◽  
Vol 94 (6) ◽  
pp. 669-675 ◽  
Author(s):  
Mohsen Alipour ◽  
Fatemeh Adineh ◽  
Hossein Mosatafavi ◽  
Azam Aminabadi ◽  
Hananeh Monirinasab ◽  
...  

Long-term hyperglycemia associates with memory defects via hippocampal cells damaging. The aim of the present study was to examine the effect of 1 month of i.p. injections of AG on passive avoidance learning (PAL) and hippocampal apoptosis in rat. Eighty male rats were divided into 10 groups: control, nondiabetics and STZ-induced diabetics treated with AG (50, 100, 200, and 400 mg/kg, i.p.). PAL and the Bcl-2 family gene expressions were determined. Diabetes resulted in memory and Bcl-2 family gene expression deficits. AG (50 and 100 mg/kg) significantly improved the learning and Bcl-2, Bcl-xl, Bax, and Bak impairment in diabetic rats. However, negative effects were indicated by higher doses of the drug (200 and 400 mg/kg). Present study suggests that 1 month of i.p. injections of lower doses of AG, may improve the impaired cognitive tasks in STZ-induced diabetic rats possibly by modulating Bcl-2 family gene expressions.


Sign in / Sign up

Export Citation Format

Share Document