Human Motor Behavior

2008 ◽  
Vol 216 (3) ◽  
pp. 147-153 ◽  
Author(s):  
Christa Einspieler ◽  
Peter B. Marschik ◽  
Heinz F.R. Prechtl

The spontaneous movements of the newborn infant have a long prenatal history. From 8 weeks postmenstrual age onward the fetus moves in distinct motor patterns. There is no period of amorphic and random movements. The patterns are easily recognizable, as all of them can be seen after birth. The human neonate demonstrates a continuum of motor patterns from prenatal to early postnatal life. Around the 3rd month a major transformation of motor and sensory patterns occurs. This makes the infant more fit to meet the requirements of the extra-uterine environment. The developmental course of spontaneous movements during the first 20 weeks postterm age shows the emergence and disappearance of various movement patterns. The so-called general movements deserve special interest as they are in their altered quality a most reliable indicator of brain (dys)function with a specific prediction of later developing cerebral palsy.

1983 ◽  
Vol 28 (10) ◽  
pp. 785-786
Author(s):  
Beth Kerr
Keyword(s):  

2002 ◽  
Vol 54 (3-4) ◽  
pp. 69-74 ◽  
Author(s):  
Svetlana Savin-Zegarac ◽  
Dubravka Cvejic ◽  
Olgica Nedic ◽  
R. Radosavljevic ◽  
Ivana Petrovic

A few years after the iodine content of salt in Serbia was increased from 7 to 15 mg/kg NaCI, iodine, thyroxine (T4) and triiodothyronine (T3) concentrations were measured in thyroid tissue obtained at autopsy from 21 human neonates who died within 30 days after birth. The thyroidal iodine as well as T4 and T3 content per gland in?creased progressively with gestational age of human neonates (r = 0.73, 0.70 and 0.67 respectively, p < 0.001). In seven newborns (gestational age 36 to 41 weeks) the mean values for total iodine, T4 and T3 per gland were 109.1 ?g, 52.2 ?g and 4.4 ?g respectively. The results of iodine and iodothyroninc content found in neonatal thyroid gland, particularly at the end of gestation and a few days of postnatal life, indicates that the iodine supply was satisfactory.


Author(s):  
Davide Piovesan ◽  
Felix C. Huang

Studies on unimpaired humans have demonstrated that the central nervous system employs internal representations of limb dynamics and intended movement trajectories for planning muscle activation during pointing and reaching tasks. However, when performing rhythmic movements, it has been hypothesized that a control scheme employing an autonomous oscillator — a simple feedback circuit lacking exogenous input — can maintain stable control. Here we investigate whether such simple control architectures that can realize rhythmic movement that we observe in experimental data. We asked subjects to perform rhythmic movements of the forearm while a robotic interface simulated inertial loading. Our protocol included unexpected increases in loading (catch trials) as a probe to reveal any systematic changes in frequency and amplitude. Our primary findings were that increased inertial loading resulted in reduced frequency of oscillations, and in some cases multiple frequencies. These results exhibit some agreement with an autonomous oscillator model, though other features are more consistent with feedforward planning of force. This investigation provides a theoretical and experimental framework to reveal basic computational elements for how the human motor system achieves skilled rhythmic movement.


2020 ◽  
Vol 42 ◽  
pp. e47129
Author(s):  
Dielise Debona Iucksch ◽  
Luize Bueno de Araujo ◽  
Karize Rafaela Mesquita Novakoski ◽  
Bruna Yamaguchi ◽  
Carolina Fernandez Carneiro ◽  
...  

Aquatic environment is widely used for recreational, sporting, and therapeutic activities. However, human motor functional behavior in immersion has not been sufficiently described. Such description is necessary to improve strategies used to perform movements in this environment and to possibly transfer them to land. Our goal is to offer a qualitative description of the aquatic motor behavior. We use action research to observe and describe motor behavior in water, which we systematized using the Aquatic Functional Assessment Scale, effects of water on the immersed body, its relationship with functional movements performed on land, and the International Classification of Functioning, Disability and Health (ICF). The results allowed the systematization of aquatic movements based on unique features of water compared to effects of activities and participation of functional movement, under a biopsychosocial view of ICF. Such systematization of aquatic behaviors enables professionals to increase their strategies and interventions in water, through that understand the complexity of this approach and improve physical and therapeutic interventions that will have an impact on health.


2000 ◽  
Vol 83 (2) ◽  
pp. 895-906 ◽  
Author(s):  
John H. Martin ◽  
Laura Donarummo ◽  
Antony Hacking

This study examined the effects of blocking neural activity in sensory motor cortex during early postnatal development on prehension. We infused muscimol, either unilaterally or bilaterally, into the sensory motor cortex of cats to block activity continuously between postnatal weeks 3–7. After stopping infusion, we trained animals to reach and grasp a cube of meat and tested behavior thereafter. Animals that had not received muscimol infusion (unilateral saline infusion; age-matched) reached for the meat accurately with small end-point errors. They grasped the meat using coordinated digit flexion followed by forearm supination on 82.7% of trials. Performance using either limb did not differ significantly. In animals receiving unilateral muscimol infusion, reaching and grasping using the limb ipsilateral to the infusion were similar to controls. The limb contralateral to infusion showed significant increases in systematic and variable reaching end-point errors, often requiring subsequent corrective movements to contact the meat. Grasping occurred on only 14.8% of trials, replaced on most trials by raking without distal movements. Compensatory adjustments in reach length and angle, to maintain end-point accuracy as movements were started from a more lateral position, were less effective using the contralateral limb than ipsilateral limb. With bilateral inactivations, the form of reaching and grasping impairments was identical to that produced by unilateral inactivation, but the magnitude of the reaching impairments was less. We discuss these results in terms of the differential effects of unilateral and bilateral inactivation on corticospinal tract development. We also investigated the degree to which these prehension impairments after unilateral blockade reflect control by each hemisphere. In animals that had received unilateral blockade between postnatal weeks (PWs) 3 and 7, we silenced on-going activity (after PW 11) during task performance using continuous muscimol infusion. We inactivated the right (previously active) and then the left (previously silenced) sensory motor cortex. Inactivation of the ipsilateral (right) sensory motor cortex produced a further increase in systematic error and less frequent normal grasping. Reinactivation of the contralateral (left) cortex produced larger increases in reaching and grasping impairments than those produced by ipsilateral inactivation. This suggests that the impaired limb receives bilateral sensory motor cortex control but that control by the contralateral (initially silenced) cortex predominates. Our data are consistent with the hypothesis that the normal development of skilled motor behavior requires activity in sensory motor cortex during early postnatal life.


1986 ◽  
Vol 9 (4) ◽  
pp. 585-599 ◽  
Author(s):  
M. B. Berkinblit ◽  
A. G. Feldman ◽  
O. I. Fukson

AbstractThe following factors underlying behavioral plasticity are discussed: (1) reflex adaptability and its role in the voluntary control of movement, (2) degrees of freedom and motor equivalence, and (3) the problem of the discrete organization of motor behavior. Our discussion concerns a variety of innate motor patterns, with emphasis on the wiping reflex in the frog.It is proposed that central regulation of stretch reflex thresholds governs voluntary control over muscle force and length. This suggestion is an integral part of the equilibrium-point hypothesis, two versions of which are compared.Kinematic analysis of the wiping reflex in the spinal frog has shown that each stimulated skin site is associated with a group of different but equally effective trajectories directed to the target site. Such phenomena reflect the principle of motor equivalence -the capacity of the neuronal structures responsible for movement to select one or another of a set of possible trajectories leading to the goal. Redundancy of degrees of freedom at the neuronal level as well as at the mechanical level of the body's joints makes motor equivalence possible. This sort of equivalence accommodates the overall flexibility of motor behavior.An integrated behavioral act or a single movement consists of dynamic components. We distinguish six components for the wiping reflex, each associated with a certain functional goal, specific body positions, and motor-equivalent movement patterns. The nervous system can combine the available components in various ways in forming integrated behavioral sequences. The significance of command neuronal organization is discussed with respect to (1) the combinatory strategy of the nervous system and (2) the relation between continuous and discrete forms of motor control. We conclude that voluntary movements are effected by the central nervous system with the help of the mechanisms that underlie the variability and modifiability of innate motor patterns.


Sign in / Sign up

Export Citation Format

Share Document