What Is Special About Social Network Analysis?

Methodology ◽  
2006 ◽  
Vol 2 (1) ◽  
pp. 2-6 ◽  
Author(s):  
Marijtje A. J. van Duijn ◽  
Jeroen K. Vermunt

In a short introduction on social network analysis, the main characteristics of social network data as well as the main goals of social network analysis are described. An overview of statistical models for social network data is given, pointing at differences and similarities between the various model classes and introducing the most recent developments in social network modeling.

Author(s):  
Sophie Mützel ◽  
Ronald Breiger

This chapter focuses on the general principle of duality, which was originally introduced by Simmel as the intersection of social circles. In a seminal article, Breiger formalized Simmel’s idea, showing how two-mode types of network data can be transformed into one-mode networks. This formal translation proved to be fundamental for social network analysis, which no longer needed data on who interacted with whom but could work with other types of data. In turn, it also proved fundamental for the analysis of how the social is structured in general, as many relations are dual (e.g. persons and groups, authors and articles, organizations and practices), and are thus susceptible to an analysis according to duality principles. The chapter locates the concept of duality within past and present sociology. It also discusses the use of duality in the analysis of culture as well as in affiliation networks. It closes with recent developments and future directions.


E-Marketing ◽  
2012 ◽  
pp. 185-197
Author(s):  
Przemyslaw Kazienko ◽  
Piotr Doskocz ◽  
Tomasz Kajdanowicz

The chapter describes a method how to perform a classification task without any demographic features and based only on the social network data. The concept of such collective classification facilitates to identify potential customers by means of services used or products purchased by the current customers, i.e. classes they belong to as well as using social relationships between the known and potential customers. As a result, a personalized offer can be prepared for the new clients. This innovative marketing method can boost targeted marketing campaigns.


Author(s):  
Przemyslaw Kazienko ◽  
Piotr Doskocz ◽  
Tomasz Kajdanowicz

The chapter describes a method how to perform a classification task without any demographic features and based only on the social network data. The concept of such collective classification facilitates to identify potential customers by means of services used or products purchased by the current customers, i.e. classes they belong to as well as using social relationships between the known and potential customers. As a result, a personalized offer can be prepared for the new clients. This innovative marketing method can boost targeted marketing campaigns.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Vincent Levorato

Social network modeling is generally based on graph theory, which allows for study of dynamics and emerging phenomena. However, in terms of neighborhood, the graphs are not necessarily adapted to represent complex interactions, and the neighborhood of a group of vertices can be inferred from the neighborhoods of each vertex composing that group. In our study, we consider that a group has to be considered as a complex system where emerging phenomena can appear. In this paper, a formalism is proposed to resolve this problematic by modeling groups in social networks using pretopology as a generalization of the graph theory. After giving some definitions and examples of modeling, we show how some measures used in social network analysis (degree, betweenness, and closeness) can be also generalized to consider a group as a whole entity.


Author(s):  
Preeti Gupta ◽  
Vishal Bhatnagar

The social network analysis is of significant interest in various application domains due to its inherent richness. Social network analysis like any other data analysis is limited by the quality and quantity of data and for which data preprocessing plays the key role. Before the discovery of useful information or pattern from the social network data set, the original data set must be converted to a suitable format. In this chapter we present various phases of social network data preprocessing. In this context, the authors discuss various challenges in each phase. The goal of this chapter is to illustrate the importance of data preprocessing for social network analysis.


2017 ◽  
Vol 8 (4) ◽  
pp. 442-453 ◽  
Author(s):  
Allan Clifton ◽  
Gregory D. Webster

Social network analysis (SNA) is a methodology for studying the connections and behavior of individuals within social groups. Despite its relevance to social and personality psychology, SNA has been underutilized in these fields. We first examine the paucity of SNA research in social and personality journals. Next we describe methodological decisions that must be made before collecting social network data, with benefits and drawbacks for each. We discuss common SNAs and give an overview of software available for SNA. We provide examples from the literature of SNA for both one-mode and two-mode network data. Finally, we make recommendations to researchers considering incorporating SNA into their research.


2021 ◽  
Vol 18 (1) ◽  
pp. 101-120
Author(s):  
Tomáš Diviák

The concept of centrality and centrality measures are well-known and frequently used in social network analysis. They are also implemented in numerous software packages. However, that does not mean that it is easy to apply them correctly. This paper aims to introduce the most frequently used centrality measures, but more importantly to point out the problems related to their application and to sketch potential solutions for these problems. First, three basic centrality measures are introduced: degree, betweenness, and closeness. There are three broad categories of issues with centrality measures. These categories are: inadequate operationalisation of centrality measures, explanation of their distribution, and interdependence of observation in statistical modelling. A typology of flows in the network is presented as a potential solution allowing for transparent operationalisation. The so-called positional approach is another potential solution allowing for conceptually and computationally rigorous definition of centrality measures. Lastly, statistical models for network data are introduced as a way to deal with interdependence of observations. In the conclusion, challenges for measuring centrality in bipartite and multiplex networks are discussed.


Author(s):  
Maria Isabel Escalona-Fernandez ◽  
Antonio Pulgarin-Guerrero ◽  
Ely Francina Tannuri de Oliveira ◽  
Maria Cláudia Cabrini Gracio

This paper analyses the scientific collaboration network formed by the Brazilian universities that investigate in dentistry area. The constructed network is based on the published documents in the Scopus (Elsevier) database covering a period of 10 (ten) years. It is used social network analysis as the best methodological approach to visualize the capacity for collaboration, dissemination and transmission of new knowledge among universities. Cohesion and density of the collaboration network is analyzed, as well as the centrality of the universities as key-actors and the occurrence of subgroups within the network. Data were analyzed using the software UCINET and NetDraw. The number of documents published by each university was used as an indicator of its scientific production.


Author(s):  
Nicole Belinda Dillen ◽  
Aruna Chakraborty

One of the most important aspects of social network analysis is community detection, which is used to categorize related individuals in a social network into groups or communities. The approach is quite similar to graph partitioning, and in fact, most detection algorithms rely on concepts from graph theory and sociology. The aim of this chapter is to aid a novice in the field of community detection by providing a wider perspective on some of the different detection algorithms available, including the more recent developments in this field. Five popular algorithms have been studied and explained, and a recent novel approach that was proposed by the authors has also been included. The chapter concludes by highlighting areas suitable for further research, specifically targeting overlapping community detection algorithms.


Sign in / Sign up

Export Citation Format

Share Document