Taxing Executive Processes Does Not Necessarily Increase Impulsive Decision Making

Author(s):  
Ana M. Franco-Watkins ◽  
Timothy C. Rickard ◽  
Hal Pashler

A link has been established between impulsivity in real-world situations and impulsive decision making in laboratory tasks in brain-damaged patients and individuals with substance abuse. Whether or not this link exists for all individuals is less clear. We conducted an experiment to determine whether taxing central executive processes with a demanding cognitive load task results in impulsive decision making in a normal sample. Participants (n = 53) completed a delay discounting task under the presence (load condition) and absence (control condition) of a demanding generation task. Results indicated that taxing working memory is neither necessary nor sufficient to produce impulsive decision making; instead, the demanding generation task resulted in an increase in the number of inconsistent choices.

2018 ◽  
Vol 71 (5) ◽  
pp. 1045-1056 ◽  
Author(s):  
Tad T Brunyé ◽  
Shaina B Martis ◽  
Holly A Taylor

Planning routes from maps involves perceiving the symbolic environment, identifying alternate routes and applying explicit strategies and implicit heuristics to select an option. Two implicit heuristics have received considerable attention, the southern route preference and initial segment strategy. This study tested a prediction from decision-making theory that increasing cognitive load during route planning will increase reliance on these heuristics. In two experiments, participants planned routes while under conditions of minimal (0-back) or high (2-back) working memory load. In Experiment 1, we examined how memory load impacts the southern route heuristic. In Experiment 2, we examined how memory load impacts the initial segment heuristic. Results replicated earlier results demonstrating a southern route preference (Experiment 1) and initial segment strategy (Experiment 2) and further demonstrated that evidence for heuristic reliance is more likely under conditions of concurrent working memory load. Furthermore, the extent to which participants maintained efficient route selection latencies in the 2-back condition predicted the magnitude of this effect. Together, results demonstrate that working memory load increases the application of heuristics during spatial decision making, particularly when participants attempt to maintain quick decisions while managing concurrent task demands.


2021 ◽  
Author(s):  
Daniel B. Ehrlich ◽  
John D. Murray

Real-world tasks require coordination of working memory, decision making, and planning, yet these cognitive functions have disproportionately been studied as independent modular processes in the brain. Here we propose that contingency representations, defined as mappings for how future behaviors depend on upcoming events, can unify working memory and planning computations. We designed a task capable of disambiguating distinct types of representations. Our experiments revealed that human behavior is consistent with contingency representations, and not with traditional sensory models of working memory. In task-optimized recurrent neural networks we investigated possible circuit mechanisms for contingency representations and found that these representations can explain neurophysiological observations from prefrontal cortex during working memory tasks. Finally, we generated falsifiable predictions for neural data to identify contingency representations in neural data and to dissociate different models of working memory. Our findings characterize a neural representational strategy that can unify working memory, planning, and context-dependent decision making.


2021 ◽  
pp. 1-8
Author(s):  
Allen J. Bailey ◽  
Ricardo J. Romeu ◽  
Peter R. Finn

Abstract Delay discounting paradigms have gained widespread popularity across clinical research. Given the prevalence in the field, researchers have set lofty expectations for the importance of delay discounting as a key transdiagnostic process and a ‘core’ process underlying specific domains of dysfunction (e.g. addiction). We believe delay discounting has been prematurely reified as, in and of itself, a core process underlying psychological dysfunction, despite significant concerns with the construct validity of discounting rates. Specifically, high delay discounting rates are only modestly related to measures of psychological dysfunction and therefore are not ‘core’ to these more complex behavioral problems. Furthermore, discounting rates do not appear to be specifically related to any disorder(s) or dimension(s) of psychopathology. This raises fundamental concerns about the utility of discounting, if the measure is only loosely associated with most forms of psychopathology. This stands in striking contrast to claims that discounting can serve as a ‘marker’ for specific disorders, despite never demonstrating adequate sensitivity or specificity for any disorder that we are aware of. Finally, empirical evidence does not support the generalizability of discounting rates to other decisions made either in the lab or in the real-world, and therefore discounting rates cannot and should not serve as a summary measure of an individual's decision-making patterns. We provide recommendations for improving future delay discounting research, but also strongly encourage researchers to consider whether the empirical evidence supports the field's hyper-focus on discounting.


2018 ◽  
Author(s):  
Darias Holgado ◽  
Mikel Zabala ◽  
Daniel Sanabria

Objectives: to test the hypothesis that cognitive load (low vs. high load) during a 20 min self-paced cycling exercise affects physical performance.Design: A pre-registered (https://osf.io/qept5/), randomized, within-subject design experiment.Methods: 28 trained and experienced male cyclists completed a 20 min self-paced cycling time-trial exercise in two separate sessions, corresponding to two working memory load conditions: 1-back or 2-back. We measured power output, heart rate, RPE and mental fatigue.Results: Bayes analyses revealed extreme evidence for the 2-back task being more demanding than the 1-back task, both in terms of accuracy (BF10 = 4490) and reaction time (BF =1316). The data only showed anecdotal evidence for the alternative hypothesis for the power output (BF10= 1.52), moderate evidence for the null hypothesis for the heart rate (BF10 = 0.172), anecdotal evidence for RPE (BF10 = 0.72) and anecdotal evidence for mental fatigue (BF10 = 0.588).Conclusions: Our data seem to challenge the idea that self-paced exercise is regulated by top-down processing, given that we did not show clear evidence of exercise impairment (at the physical, physiological and subjective levels) in the high cognitive load condition task with respect to the low working memory load condition. The involvement of top-down processing in self-pacing the physical effort, however, cannot be totally discarded. Factors like the duration of the physical and cognitive tasks, the potential influence of dual-tasking, and the participants’ level of expertise, should be taken into account in future attempts to investigate the role of top-down processing in self-pace exercise


2021 ◽  
Author(s):  
Mahi Luthra ◽  
Peter M. Todd

Recency effects—giving exaggerated importance to recent outcomes—are a common aspect of decision tasks. In the current study, we explore two explanations of recency-based decision making, that it is (1) a deliberate strategy for adaptive decision making in real-world environments which tend to be dynamic and autocorrelated, and/or (2) a product of processing limitations of working memory. Supporting explanation 1, we found that participants strategically adjusted their recency levels across trials to achieve optimal levels in a range of tasks. Furthermore, they started with default recency values that had high aggregate performance across environments. However, only some correlations between recency values and WM scores were significant, providing no clear conclusion regarding explanation 2. Ultimately, we propose that recency involves a combination of the two—people can strategically change recency within the limits of WM capacities to adapt to external environments.


2016 ◽  
Vol 37 (4) ◽  
pp. 239-249
Author(s):  
Xuezhu Ren ◽  
Tengfei Wang ◽  
Karl Schweizer ◽  
Jing Guo

Abstract. Although attention control accounts for a unique portion of the variance in working memory capacity (WMC), the way in which attention control contributes to WMC has not been thoroughly specified. The current work focused on fractionating attention control into distinctly different executive processes and examined to what extent key processes of attention control including updating, shifting, and prepotent response inhibition were related to WMC and whether these relations were different. A number of 216 university students completed experimental tasks of attention control and two measures of WMC. Latent variable analyses were employed for separating and modeling each process and their effects on WMC. The results showed that both the accuracy of updating and shifting were substantially related to WMC while the link from the accuracy of inhibition to WMC was insignificant; on the other hand, only the speed of shifting had a moderate effect on WMC while neither the speed of updating nor the speed of inhibition showed significant effect on WMC. The results suggest that these key processes of attention control exhibit differential effects on individual differences in WMC. The approach that combined experimental manipulations and statistical modeling constitutes a promising way of investigating cognitive processes.


2007 ◽  
Author(s):  
Paul Whitney ◽  
Christa A. Rinehart ◽  
John M. Hinson ◽  
Allison L. Matthews ◽  
Aaron K. Wirick

Sign in / Sign up

Export Citation Format

Share Document