Role of an Ideomotor Mechanism in Number Processing

Author(s):  
Arnaud Badets ◽  
Iring Koch ◽  
Lucette Toussaint

The ideomotor principle predicts that the anticipation of expected sensory consequences precedes and controls voluntary goal-directed movements. Recent studies have revealed that an ideomotor mechanism could also support the link between finger movements and number processing. However, it is unknown whether such a mechanism is devoted to number processing per se, that is, without associated movement. In three experiments, we tested whether the ideomotor mechanism was also involved in a verbal number production task without associated goal-directed and motor dimensions. We tested this hypothesis in a response-effect (R-E) paradigm generally used to assess the ideomotor mechanisms. The results of Experiment 1 revealed a compatibility effect both in a stimulus-response task and an R-E task, suggesting the involvement of an ideomotor mechanism during number processing. More importantly, Experiment 2 revealed that performance in a motor imagery task correlated with the R-E compatibility effect, whereas performance in a visual imagery task did not, suggesting a distinct motor imagery contribution to R-E compatibility. Finally, Experiment 3 showed a strong R-E compatibility effect in a verbal word production task, but the correlations with motor or visual imagery tasks were not observed. Altogether, these findings suggest that ideomotor mechanisms play a specific and functional role in number processing.

2021 ◽  
Vol 15 ◽  
Author(s):  
Irini Giannopulu ◽  
Haruo Mizutani

Motor imagery (MI) is assimilated to a perception-action process, which is mentally represented. Although several models suggest that MI, and its equivalent motor execution, engage very similar brain areas, the mechanisms underlying MI and their associated components are still under investigation today. Using 22 Ag/AgCl EEG electrodes, 19 healthy participants (nine males and 10 females) with an average age of 25.8 years old (sd = 3.5 years) were required to imagine moving several parts of their body (i.e., first-person perspective) one by one: left and right hand, tongue, and feet. Network connectivity analysis based on graph theory, together with a correlational analysis, were performed on the data. The findings suggest evidence for motor and somesthetic neural synchronization and underline the role of the parietofrontal network for the tongue imagery task only. At both unilateral and bilateral cortical levels, only the tongue imagery task appears to be associated with motor and somatosensory representations, that is, kinesthetic representations, which might contribute to verbal actions. As such, the present findings suggest the idea that imagined tongue movements, involving segmentary kinesthetic actions, could be the prerequisite of language.


2005 ◽  
Vol 17 (1) ◽  
pp. 97-112 ◽  
Author(s):  
Floris P. de Lange ◽  
Peter Hagoort ◽  
Ivan Toni

We have used implicit motor imagery to investigate the neural correlates of motor planning independently from actual movements. Subjects were presented with drawings of left or right hands and asked to judge the hand laterality, regardless of the stimulus rotation from its upright orientation. We paired this task with a visual imagery control task, in which subjects were presented with typographical characters and asked to report whether they saw a canonical letter or its mirror image, regardless of its rotation. We measured neurovascular activity with fast event-related fMRI, distinguishing responses parametrically related to motor imagery from responses evoked by visual imagery and other task-related phenomena. By quantifying behavioral and neurovascular correlates of imagery on a trial-by-trial basis, we could discriminate between stimulus-related, mental rotation-related, and response-related neural activity. We found that specific portions of the posterior parietal and precentral cortex increased their activity as a function of mental rotation only during the motor imagery task. Within these regions, the parietal cortex was visually responsive, whereas the dorsal precentral cortex was not. Response- but not rotation-related activity was found around the left central sulcus (putative primary motor cortex) during both imagery tasks. Our study provides novel evidence on the topography and content of movement representations in the human brain. During intended action, the posterior parietal cortex combines somatosensory and visuomotor information, whereas the dorsal premotor cortex generates the actual motor plan, and the primary motor cortex deals with movement execution. We discuss the relevance of these results in the context of current models of action planning.


Author(s):  
Addie Dutta ◽  
Robert W. Proctor

Stimulus-response compatibility effects have been shown to persist even after extended practice. In the present study, two experiments were conducted to see if the effects persist when knowledge of results that allows subjects to set performance goals is provided. In the first experiment, summary feedback about mean accuracy and mean reaction time was provided after each block of 40 trials of practice in a two-choice spatial compatibility task. Subjects practiced the task for 2,400 trials, yet the compatibility effect was not eliminated. Compared to previous experiments, reaction times were faster overall, but the degree of change was the same for both compatible and incompatible assignments. In the second experiment, a response deadline was imposed on each trial. If the subject did not respond within the time limit, which was reduced as the experiment progressed, auditory feedback was presented. Summary feedback was also presented as in Experiment 1. Again, 2,400 trials of practice reduced but did not eliminate the compatibility effect. The greater reduction in the difference in reaction times for compatible and incompatible assignments, relative to other experiments, could be attributed to speed-accuracy tradeoff. The results indicate that the persistence of stimulus-response compatibility effects with extended practice is not due to poorer motivation to perform with the incompatible assignment. The results suggest that training will be insufficient to overcome difficulties in performance resulting from spatially incompatible assignments.


2021 ◽  
Vol 15 ◽  
Author(s):  
Nikki Leeuwis ◽  
Alissa Paas ◽  
Maryam Alimardani

Brain-computer interfaces (BCIs) are communication bridges between a human brain and external world, enabling humans to interact with their environment without muscle intervention. Their functionality, therefore, depends on both the BCI system and the cognitive capacities of the user. Motor-imagery BCIs (MI-BCI) rely on the users’ mental imagination of body movements. However, not all users have the ability to sufficiently modulate their brain activity for control of a MI-BCI; a problem known as BCI illiteracy or inefficiency. The underlying mechanism of this phenomenon and the cause of such difference among users is yet not fully understood. In this study, we investigated the impact of several cognitive and psychological measures on MI-BCI performance. Fifty-five novice BCI-users participated in a left- versus right-hand motor imagery task. In addition to their BCI classification error rate and demographics, psychological measures including personality factors, affinity for technology, and motivation during the experiment, as well as cognitive measures including visuospatial memory and spatial ability and Vividness of Visual Imagery were collected. Factors that were found to have a significant impact on MI-BCI performance were Vividness of Visual Imagery, and the personality factors of orderliness and autonomy. These findings shed light on individual traits that lead to difficulty in BCI operation and hence can help with early prediction of inefficiency among users to optimize training for them.


2022 ◽  
Author(s):  
Long Li ◽  
Yanlong Zhang ◽  
Liming Fan ◽  
Jie Zhao ◽  
Jing Guo ◽  
...  

Abstract Background: Auditory feedback is one of the most important feedback in cognitive process. It plays an important guiding role in cognitive motor process. However, previous studies on auditory stimuli mainly focused on the cognitive effects of auditory stimuli on cortex, while the role of auditory feedback stimuli in motor imagery tasks is still unclear.Methods: 18 healthy subjects were recruited to complete the motor imagination task stimulated by meaningful words and meaningless words. In order to explore the role of auditory stimuli in motor imagination tasks, we studied EEG power spectrum, frontal parietal mismatch negativity (MMN) and inter test phase-locked consistency (ITPC). one-way Analysis of Variance (ANOVA) and Least Significant Difference (LSD) correction were used to test the differences between the two experimental groups and the differences of different bands in each experimental group.Results: EEG power spectrum analysis showed that the activity of contralateral motor cortex was significantly increased under the stimulation of meaningful words, and the amplitude of mismatch negative wave was also significantly increased. ITPC is mainly concentrated in μ, α and γ bands in the process of motor imagery task guided by the auditory stimulus of meaningful words, while it is mainly concentrated in the β band under the meaningless words stimulation.Conclusions: This results may be due to the influence of auditory cognitive process on motor imagery. We speculate that there may be a more complex mechanism for the effect of auditory stimulation on the inter test phase lock consistency. When the stimulus sound has the corresponding meaning to the motor action, the parietal motor cortex may be more affected by the prefrontal cognitive cortex, thus changing its normal response mode. This mode change is caused by the joint action of motor imagination, cognitive and auditory stimuli. This study provides a new insight into the neural mechanism of motor imagery task guided by auditory stimuli, and provides more information on the activity characteristics of the brain network in motor imagery task by cognitive auditory feedback.


2011 ◽  
Vol 29 (supplement) ◽  
pp. 352-377 ◽  
Author(s):  
Seon Hee Jang ◽  
Frank E Pollick

The study of dance has been helpful to advance our understanding of how human brain networks of action observation are influenced by experience. However previous studies have not examined the effect of extensive visual experience alone: for example, an art critic or dance fan who has a rich experience of watching dance but negligible experience performing dance. To explore the effect of pure visual experience we performed a single experiment using functional Magnetic Resonance Imaging (fMRI) to compare the neural processing of dance actions in 3 groups: a) 14 ballet dancers, b) 10 experienced viewers, c) 12 novices without any extensive dance or viewing experience. Each of the 36 participants viewed short 2-second displays of ballet derived from motion capture of a professional ballerina. These displays represented the ballerina as only points of light at the major joints. We wished to study the action observation network broadly and thus included two different types of display and two different tasks for participants to perform. The two different displays were: a) brief movies of a ballet action and b) frames from the ballet movies with the points of lights connected by lines to show a ballet posture. The two different tasks were: a) passively observe the display and b) imagine performing the action depicted in the display. The two levels of display and task were combined factorially to produce four experimental conditions (observe movie, observe posture, motor imagery of movie, motor imagery of posture). The set of stimuli used in the experiment are available for download after this paper. A random effects ANOVA was performed on brain activity and an effect of experience was obtained in seven different brain areas including: right Temporoparietal Junction (TPJ), left Retrosplenial Cortex (RSC), right Primary Somatosensory Cortex (S1), bilateral Primary Motor Cortex (M1), right Orbitofrontal Cortex (OFC), right Temporal Pole (TP). The patterns of activation were plotted in each of these areas (TPJ, RSC, S1, M1, OFC, TP) to investigate more closely how the effect of experience changed across these areas. For this analysis, novices were treated as baseline and the relative effect of experience examined in the dancer and experienced viewer groups. Interpretation of these results suggests that both visual and motor experience appear equivalent in producing more extensive early processing of dance actions in early stages of representation (TPJ and RSC) and we hypothesise that this could be due to the involvement of autobiographical memory processes. The pattern of results found for dancers in S1 and M1 suggest that their perception of dance actions are enhanced by embodied processes. For example, the S1 results are consistent with claims that this brain area shows mirror properties. The pattern of results found for the experienced viewers in OFC and TP suggests that their perception of dance actions are enhanced by cognitive processes. For example, involving aspects of social cognition and hedonic processing – the experienced viewers find the motor imagery task more pleasant and have richer connections of dance to social memory. While aspects of our interpretation are speculative the core results clearly show common and distinct aspects of how viewing experience and physical experience shape brain responses to watching dance.


Sign in / Sign up

Export Citation Format

Share Document