Tropical Tropospheric Temperature and Precipitation Response to Sea Surface Temperature Forcing

2013 ◽  
pp. 379-392 ◽  
Author(s):  
Hui Su ◽  
J. David Neelin ◽  
Joyce E. Meyerson
2013 ◽  
Vol 141 (3) ◽  
pp. 1118-1123 ◽  
Author(s):  
Arun Kumar ◽  
Li Zhang ◽  
Wanqiu Wang

Abstract The focus of this investigation is how the relationship at intraseasonal time scales between sea surface temperature and precipitation (SST–P) varies among different reanalyses. The motivation for this work was spurred by a recent report that documented that the SST–P relationship in Climate Forecast System Reanalysis (CFSR) was much closer to that in the observation than it was for the older generation of reanalyses [i.e., NCEP–NCAR reanalysis (R1) and NCEP–Department of Energy (DOE) reanalysis (R2)]. Further, the reason was attributed either to the fact that the CFSR is a partially coupled reanalysis, while R1 and R2 are atmospheric-alone reanalyses, or that R1 and R2 use the observed weekly-averaged SST. The authors repeated the comparison of the SST–P relationship among R1, R2, and CFSR, as well as two recent generations of atmosphere-alone reanalyses, the Modern-Era Retrospective Analysis for Research and Applications (MERRA) and the ECMWF Re-Analysis Interim (ERA-Interim). The results clearly demonstrate that the differences in the SST–P relationship at intraseasonal time scales across different reanalyses are not due to whether the reanalysis system is coupled or atmosphere alone, but are due to the specification of different SSTs. The SST–P relationship in different reanalyses, when computed against a single SST for the benchmark, demonstrates a relationship that is common across all of the reanalyses and observations.


1981 ◽  
Vol 62 (12) ◽  
pp. 1666-1675 ◽  
Author(s):  
Julian Adem ◽  
William L. Donn

A long-range forecasting technique, based on a physical model that emphasizes thermodynamics, is applied to the prediction of anomalies of temperature and precipitation for the Northern Hemisphere. Monthly forecasts are initialized with the sea surface temperature, 700 mb temperature and surface albedo, including variable snow-ice conditions. Application to the hot spell and drought in the summer of 1980 for the contiguous United States shows very encouraging skill when verified for the standard 100-station NOAA grid.


2008 ◽  
Vol 97 (1-2) ◽  
pp. 195-203 ◽  
Author(s):  
Christine K. Lee ◽  
Samuel S. P. Shen ◽  
Barbara Bailey ◽  
Gerald R. North

2012 ◽  
Vol 25 (4) ◽  
pp. 1340-1348 ◽  
Author(s):  
Zhengzhao Johnny Luo ◽  
Dieter Kley ◽  
Richard H. Johnson ◽  
G. Y. Liu ◽  
Susanne Nawrath ◽  
...  

Abstract Multiple years of measurements of tropical upper-tropospheric temperature and humidity by the Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) project are analyzed in the vicinity of deep convective outflow to study the variations of temperature and humidity and to investigate the influence of the sea surface temperature (SST) on the outflow air properties. The principal findings are the following. 1) The distribution of relative humidity with respect to ice (RHi) depends on where a convective system is sampled by the MOZAIC aircraft: deep inside the system, RHi is unimodal with the mode at ~114%; near the outskirts of the system, bimodal distribution of RHi starts to emerge with a dry mode at around 40% and a moist mode at 100%. The results are compared with previous studies using in situ measurements and model simulations. It is suggested that the difference in the RHi distribution can be explained by the variation of vertical motions associated with a convective system. 2) Analysis of MOZAIC data shows that a fractional increase of specific humidity with SST, q−1 dq/dSTT, near the convective outflow is about 0.16–0.18 K−1. These values agree well with previous studies using satellite data. Because MOZAIC measurements of temperature and humidity are independent, the authors further analyze the SST dependence of RHi and temperature individually. Temperature increases with SST for both prevalent flight levels (238 and 262 hPa); RHi stays close to constant with respect to SST for 238 hPa but shows an increasing trend for the 262-hPa level. Analysis conducted in this study represents a unique observational basis against which model simulations of upper-tropospheric humidity and its connection to deep convection and SST can be evaluated.


Sign in / Sign up

Export Citation Format

Share Document