scholarly journals Evolution of the Kurile-Kamchatkan volcanic arcs and dynamics of the Kamchatka-Aleutian Junction

Author(s):  
G. P. Avdeiko ◽  
D. P. Savelyev ◽  
A. A. Palueva ◽  
S. V. Popruzhenko
Keyword(s):  
Author(s):  
Clark M. Johnson ◽  
Steven B. Shirey ◽  
Karin M. Barovich

ABSTRACT:The Lu-Hf and Re-Os isotope systems have been applied sparsely to elucidate the origin of granites, intracrustal processes and the evolution of the continental crust. The presence or absence of garnet as a residual phase during partial melting will strongly influence Lu/Hf partitioning, making the Lu–Hf isotope system exceptionally sensitive to evaluating the role of garnet during intracrustal differentiation processes. Mid-Proterozoic (1·1–1·5Ga ) ‘anorogenic’ granites from the western U.S.A. appear to have anomalously high εHf values, relative to their εNd values, compared with Precambrian orogenic granites from several continents. The Hf-Nd isotope variations for Precambrian orogenic granites are well explained by melting processes that are ultimately tied to garnet-bearing sources in the mantle or crust. Residual, garnet-bearing lower and middle crust will evolve to anomalously high εHf values over time and may be the most likely source for later ‘anorogenic’ magmas. When crustal and mantle rocks are viewed together in terms of Hf and Nd isotope compositions, a remarkable mass balance is apparent for at least the outer silicate earth where Precambrian orogenic continental crust is the balance to the high-εHf depleted mantle, and enriched lithospheric mantle is the balance to the low-εHf depleted mantle.Although the continental crust has been envisioned to have exceptionally high Re/Os ratios and very radiogenic Os isotope compositions, new data obtained on magnetite mineral separates suggest that some parts of the Precambrian continental crust are relatively Os-rich and non-radiogenic. It remains unclear how continental crust may obtain non-radiogenic Os isotope ratios, and these results have important implications for Re-Os isotope evolution models. In contrast, Phanerozoic batholiths and volcanic arcs that are built on young mafic lower crust may have exceptionally radiogenic Os isotope ratios. These results highlight the unique ability of Os isotopes to identify young mafic crustal components in orogenic magmas that are essentially undetectable using other isotope systems such as O, Sr, Nd and Pb.


2007 ◽  
Vol 239 (3-4) ◽  
pp. 305-322 ◽  
Author(s):  
Robert L. King ◽  
Gray E. Bebout ◽  
Marty Grove ◽  
Takuya Moriguti ◽  
Eizo Nakamura

1985 ◽  
Vol 22 (3) ◽  
pp. 452-463 ◽  
Author(s):  
B. R. Watters ◽  
R. L. Armstrong

Two whole-rock suites of metavolcanic rocks from separate volcanic belts of the Churchill Province in northern Saskatchewan have been dated by Rb–Sr. Samples from the Amisk Group of the Flin Flon – Snow Lake domain provide an isochron date of 1784 ± 44 Ma; suites from the Waddy Lake and Devil Lake areas of the La Ronge (–Lynn Lake) domain yield isochron dates of 1814 ± 26 and 1854 ± 100 Ma, respectively. All are regarded as minima for, but close approximations to, emplacement ages. The maximum crustal age of any suite cannot greatly exceed 1850 Ma.Previous Rb–Sr and U–Pb isotopic dates together with these new determinations confirm the contemporaneous existence of two volcanic arcs, active during the late Aphebian (1875–1784 Ma) in the Churchill Province.Low initial 87Sr/86Sr ratios (0.7017–0.7022) are consistent with a petrochemically inferred subduction-related origin for the volcanic rocks with no closed-system reworking of Archean crust, and a linear evolution of 87Sr/86Sr ratio in the magmatic-arc mantle source region from 4.55 Ga to the present.


2021 ◽  
Author(s):  
Yuri Perepechko ◽  
Konstantin Sorokin ◽  
Anna Mikheeva ◽  
Viktor Sharapov ◽  
Sherzad Imomnazarov

<p>The paper presents a non-isothermal model of hydrodynamic heating of lithospheric rocks above magma chambers in application to the seismic focal zone of the Kamchatka region and associated volcanic arcs. The effect of convective heating of mantle and crustal rocks on dynamics of metasomatic changes and convective melting was studied. In the existing models of ore-forming systems, fluid mass transfer is determined mainly by the retrograde boiling of magmas in meso-abyssal intrusive chambers. Analysis of the manifestations of deposits of the porphyry formation of the Pacific Ocean active margins shows the decisive participation in their formation of mantle-crust ore-igneous systems. The model of convective heat-mass transfer in fluid mantle-crust systems coupled with magma chambers is designed with the consideration of effects of interphase interaction in rocks of permeable zones above igneous fluid sources. Numerical simulation of the dynamics of fluid systems under the volcanoes of the frontal zone of Kamchatka shows altered ultramafic rocks in metasomatic zoning and the presence of facial changes in the mineral composition of wehrlitized rocks. In the mantle wedge of the northwestern margin of the Pacific Ocean, over which epicontinental volcanic arcs developed in the post-Miocene stage, there is possible combination of the products of different-time and different-level igneous systems in the same permeable "earth's crust-lithospheric mantle" transition zones. Assuming that the "cratonization" of volcanic sections of the continental Earth's crust follows the "metasomatic granitization" pattern, the initial element of which is the wehrlitization of mantle wedge ultramafic rocks, the processes of metasomatic fertilization of mantle wedge rocks were investigated using a flow-through multiple-reservoir reactor. In the seismically active regions of the Pacific transition lithosphere, specific conditions for heating of areas of increased permeability above mantle fluid sources should be recorded. Metasomatic columns in such fluid systems can describe the formation of at least three levels of convective melting of metasomatized mantle wedge substrates, as well as the formation of a region of high-temperature fluid change of mafic intrusion rocks in the Earth's crust. The work was financially supported by the Russian Foundation for Basic Research, grants No. 19-05-00788.</p>


Sign in / Sign up

Export Citation Format

Share Document