scholarly journals Nitrous oxide and methane during the 1994 SW monsoon in the Arabian Sea/northwestern Indian Ocean

1999 ◽  
Vol 104 (C12) ◽  
pp. 30067-30084 ◽  
Author(s):  
Robert. C. Upstill-Goddard ◽  
Jonathan Barnes ◽  
Nicholas J. P. Owens
2014 ◽  
Vol 11 (20) ◽  
pp. 5733-5747 ◽  
Author(s):  
T. Rixen ◽  
A. Baum ◽  
B. Gaye ◽  
B. Nagel

Abstract. The Arabian Sea plays an important role in the marine nitrogen cycle because of its pronounced mid-water oxygen minimum zone (OMZ) in which bio-available nitrate (NO3−) is reduced to dinitrogen gas (N2). As the nitrogen cycle can respond fast to climate-induced changes in productivity and circulation, the Arabian Sea sediments are an important palaeoclimatic archive. In order to understand seasonal and interannual variations in the nitrogen cycle, nutrient data were obtained from the literature published prior to 1993, evaluated, and compared with data measured during five expeditions carried out in the framework of the Joint Global Ocean Flux Study (JGOFS) in the Arabian Sea in 1995 and during a research cruise of RV Meteor in 2007. The data comparison showed that the area characterized by a pronounced secondary nitrite maximum (SNM) was by 63% larger in 1995 than a similarly determined estimate based on pre-JGOFS data. This area, referred to as the core of the denitrifying zone, showed strong seasonal and interannual variations driven by the monsoon. During the SW monsoon, the SNM retreated eastward due to the inflow of oxygen-enriched Indian Ocean Central Water (ICW). During the NE monsoon, the SNM expanded westward because of the reversal of the current regime. On an interannual timescale, a weaker SW monsoon decreased the inflow of ICW from the equatorial Indian Ocean and increased the accumulation of denitrification tracers by extending the residence time of water in the SNM. This is supported by palaeoclimatic studies showing an enhanced preservation of accumulative denitrification tracers in marine sediments in conjunction with a weakening of the SW monsoon during the late Holocene.


2001 ◽  
Vol 1 (1) ◽  
pp. 167-192 ◽  
Author(s):  
H. W. Bange ◽  
M. O. Andreae ◽  
S. Lal ◽  
C. S. Law ◽  
S. W. A. Naqvi ◽  
...  

Abstract. We computed high-resolution (1o latitude × 1o longitude) seasonal and annual nitrous oxide (N2O) concentration fields for the Arabian Sea surface layer using a database containing more than 2400 values measured between December 1977 and July 1997. N2O concentrations are highest during the southwest (SW) monsoon along the southern Indian continental shelf. Annual emissions range from 0.33 to 0.70 Tg N2O and are dominated by fluxes from coastal regions during the SW and northeast monsoons. However, the tendency to focus on measurements in locally restricted features in combination with insufficient seasonal data coverage leads to considerable uncertainties of the concentration fields and thus in the flux estimates, especially in the coastal zones of the northern and eastern Arabian Sea.


2013 ◽  
Vol 10 (12) ◽  
pp. 19541-19570 ◽  
Author(s):  
T. Rixen ◽  
A. Baum ◽  
B. Gaye ◽  
B. Nagel

Abstract. The Arabian Sea is strongly influenced by the Asian monsoon and plays an important role as a climate archive and in the marine nitrogen cycle, because bio-available NO3− is reduced to dinitrogen gas (N2) in its mid-water oxygen minimum layer (OMZ). In order to investigate seasonal and interannual variations of the nitrogen cycle, nutrient data were obtained from the literature prior to 1993, evaluated, and compared with data measured during five expeditions in 1995 as well as a research cruise in 2007. Our results imply that the area characterized by a pronounced secondary nitrite maximum (SNM) was by 63% larger in 1995 than before. This area, referred to as the core of the denitrifying zone, shows strong seasonal and interannual variations driven by the monsoon. During the SW monsoon the SNM retreats eastwards due to the inflow of oxygen-enriched Indian Ocean Central Water (ICW) and it expands westwards during the NE monsoon because of the reversal of the current regime, which allows the propagation of denitrification signals from the Indian shelf into the open Arabian Sea. On an interannual time-scale an enhanced SW monsoon increases NO3− losses by increasing the upwelling-driven carbon export into the subsurface waters. An associate enhanced inflow of ICW increases the transport of denitrification signals from the SNM into the upwelling region and compensates NO3− losses by enhanced NO3− supply from the Indian Ocean. The latter sustains an enhanced productivity, which in turn transfers denitrification signals into the sedimentary records. On glacial interglacial time scales sea level changes affecting the inflow of ICW seem to increase variations in the accumulation of denitrification tracers in the SNM by reducing the residence time during glacial periods.


2007 ◽  
Vol 20 (13) ◽  
pp. 2978-2993 ◽  
Author(s):  
Tommy G. Jensen

Abstract Composites of Florida State University winds (1970–99) for four different climate scenarios are used to force an Indian Ocean model. In addition to the mean climatology, the cases include La Niña, El Niño, and the Indian Ocean dipole (IOD). The differences in upper-ocean water mass exchanges between the Arabian Sea and the Bay of Bengal are investigated and show that, during El Niño and IOD years, the average clockwise Indian Ocean circulation is intensified, while it is weakened during La Niña years. As a consequence, high-salinity water export from the Arabian Sea into the Bay of Bengal is enhanced during El Niño and IOD years, while transport of low-salinity waters from the Bay of Bengal into the Arabian Sea is enhanced during La Niña years. This provides a venue for interannual salinity variations in the northern Indian Ocean.


1996 ◽  
Vol 23 (22) ◽  
pp. 3175-3178 ◽  
Author(s):  
Hermann W. Bange ◽  
Spyridon Rapsomanikis ◽  
Meinrat O. Andreae

2005 ◽  
Vol 23 (6) ◽  
pp. 2011-2030 ◽  
Author(s):  
S. K. Nair ◽  
K. Parameswaran ◽  
K. Rajeev

Abstract. Aerosol distribution over the oceanic regions around the Indian subcontinent and its seasonal and interannual variabilities are studied using the aerosol optical depth (AOD) derived from NOAA-14 and NOAA-16 AVHRR data for the period of November 1995–December 2003. The air-mass types over this region during the Asian summer monsoon season (June–September) are significantly different from those during the Asian dry season (November–April). Hence, the aerosol loading and its properties over these oceanic regions are also distinctly different in these two periods. During the Asian dry season, the Arabian Sea and Bay of Bengal are dominated by the transport of aerosols from Northern Hemispheric landmasses, mainly the Indian subcontinent, Southeast Asia and Arabia. This aerosol transport is rather weak in the early part of the dry season (November–January) compared to that in the later period (February–April). Large-scale transport of mineral dust from Arabia and the production of sea-salt aerosols, due to high surface wind speeds, contribute to the high aerosol loading over the Arabian Sea region during the summer monsoon season. As a result, the monthly mean AOD over the Arabian Sea shows a clear annual cycle with the highest values occurring in July. The AOD over the Bay of Bengal and the Southern Hemisphere Indian Ocean also displays an annual cycle with maxima during March and October, respectively. The amplitude of the annual variation is the largest in coastal Arabia and the least in the Southern Hemisphere Indian Ocean. The interannual variability in AOD is the largest over the Southeast Arabian Sea (seasonal mean AOD varies from 0.19 to 0.42) and the northern Bay of Bengal (seasonal mean AOD varies from 0.24 to 0.39) during the February–April period and is the least over the Southern Hemisphere Indian Ocean. This study also investigates the altitude regions and pathways of dominant aerosol transport by combining the AOD distribution with the atmospheric circulation. Keywords. Atmospheric composition and structure (Aerosols and particles) – Meteorology and atmospheric dynamics (Climatology) – Oceanography: physical (Ocean fog and aerosols)


2020 ◽  
Author(s):  
Sobhan Kumar Kompalli ◽  
Surendran Nair Suresh Babu ◽  
Krishnaswamy Krishnamoorthy ◽  
Sreedharan Krishnakumari Satheesh ◽  
Mukunda M. Gogoi ◽  
...  

Abstract. Regional climatic implications of aerosol black carbon (BC) are well recognized over South Asia, which has a wide variety of anthropogenic sources in a large abundance. Significant uncertainties remain in its quantification due to lack of sufficient information on the microphysical properties (its concentration, size, and mixing state with other aerosol components), which determine the absorption potential of BC. Especially the information on mixing state of BC is extremely sparse over this region. In this study, first-ever observations of the size distribution and mixing state of individual refractory black carbon (rBC) particles in the south Asian outflow to Southeastern Arabian Sea, northern and equatorial Indian Ocean regions are presented based on measurements using a single particle soot photometer (SP2) aboard the ship cruise of the Integrated Campaign for Aerosols, gases, and Radiation Budget (ICARB-2018) during winter-2018 (16 January to 13 February). The results revealed significant spatial heterogeneity of BC characteristics. Highest rBC mass concentrations (~ 938 ± 293 ng m−3) with the highest relative coating thickness (RCT; the ratio of BC core to its coating diameters) of ~ 2.16 ± 0.19 are found over the Southeast Arabian Sea (SEAS) region, which is in the proximity of the continental outflow. As we move to farther oceanic regions, though the mass concentrations decreased by nearly half (~ 546 ± 80 ng m−3), BC still remained thickly coated (RCT ~ 2.05 ± 0.07). The air over the remote equatorial Indian Ocean, which received considerable marine air masses compared to the other regions, showed the lowest rBC mass concentrations (~ 206 ± 114 ng m−3), with a moderately thick coating (RCT ~ 1.73 ± 0.16). Even over oceanic regions far from the landmass, regions which received the outflow from more industrialized east coast/the Bay of Bengal had thicker coating (~ 104 nm) compared to regions that received outflow from the west coast/peninsular India (~ 86 nm). Although different regions of the ocean depicted contrasting concentrations and mixing state parameters due to varying extent and nature of the continental outflow as well as the atmospheric lifetime of air masses, the modal parameters of rBC mass-size distributions were similar over all the regions. The observed mono-modal distribution with mean mass median diameters (MMD) in the range of 0.19–0.20 μm suggested mixed sources of BC. The mean fraction of BC containing particles (FBC) varied in the range 0.20–0.28 (suggesting significant amounts of non-BC particles), whereas the bulk mixing ratio of coating mass to rBC mass was highest (8.77 ± 2.77) over the outflow regions compared to the remote ocean (4.29 ± 1.54) highlighting the role of outflow in providing condensable material for coating on rBC. These parameters, along with the information on size-resolved mixing state of BC cores, throw light on the role of sources and secondary processing of their complex mixtures for coating on BC under highly polluted conditions. Examination of the non-refractory sub-micrometre aerosol chemical composition obtained using the aerosol chemical speciation monitor (ACSM) suggested that the overall aerosol system was sulfate dominated over the far-oceanic regions. In contrast, organics were equally prominent adjacent to the coastal landmass. Association between the BC mixing state and aerosol chemical composition suggested that sulfate was the probable dominant coating material on rBC cores.


2020 ◽  
Vol 17 (23) ◽  
pp. 6051-6080
Author(s):  
Tim Rixen ◽  
Greg Cowie ◽  
Birgit Gaye ◽  
Joaquim Goes ◽  
Helga do Rosário Gomes ◽  
...  

Abstract. Decreasing concentrations of dissolved oxygen in the ocean are considered one of the main threats to marine ecosystems as they jeopardize the growth of higher organisms. They also alter the marine nitrogen cycle, which is strongly bound to the carbon cycle and climate. While higher organisms in general start to suffer from oxygen concentrations < ∼ 63 µM (hypoxia), the marine nitrogen cycle responds to oxygen concentration below a threshold of about 20 µM (microbial hypoxia), whereas anoxic processes dominate the nitrogen cycle at oxygen concentrations of < ∼ 0.05 µM (functional anoxia). The Arabian Sea and the Bay of Bengal are home to approximately 21 % of the total volume of ocean waters revealing microbial hypoxia. While in the Arabian Sea this oxygen minimum zone (OMZ) is also functionally anoxic, the Bay of Bengal OMZ seems to be on the verge of becoming so. Even though there are a few isolated reports on the occurrence of anoxia prior to 1960, anoxic events have so far not been reported from the open northern Indian Ocean (i.e., other than on shelves) during the last 60 years. Maintenance of functional anoxia in the Arabian Sea OMZ with oxygen concentrations ranging between > 0 and ∼ 0.05 µM is highly extraordinary considering that the monsoon reverses the surface ocean circulation twice a year and turns vast areas of the Arabian Sea from an oligotrophic oceanic desert into one of the most productive regions of the oceans within a few weeks. Thus, the comparably low variability of oxygen concentration in the OMZ implies stable balances between the physical oxygen supply and the biological oxygen consumption, which includes negative feedback mechanisms such as reducing oxygen consumption at decreasing oxygen concentrations (e.g., reduced respiration). Lower biological oxygen consumption is also assumed to be responsible for a less intense OMZ in the Bay of Bengal. According to numerical model results, a decreasing physical oxygen supply via the inflow of water masses from the south intensified the Arabian Sea OMZ during the last 6000 years, whereas a reduced oxygen supply via the inflow of Persian Gulf Water from the north intensifies the OMZ today in response to global warming. The first is supported by data derived from the sedimentary records, and the latter concurs with observations of decreasing oxygen concentrations and a spreading of functional anoxia during the last decades in the Arabian Sea. In the Arabian Sea decreasing oxygen concentrations seem to have initiated a regime shift within the pelagic ecosystem structure, and this trend is also seen in benthic ecosystems. Consequences for biogeochemical cycles are as yet unknown, which, in addition to the poor representation of mesoscale features in global Earth system models, reduces the reliability of estimates of the future OMZ development in the northern Indian Ocean.


Check List ◽  
2015 ◽  
Vol 11 (1) ◽  
pp. 1544 ◽  
Author(s):  
Amruta Prasade ◽  
Deepak Apte ◽  
Purushottam Kale ◽  
Otto M.P. Oliveira

The benthic ctenophore Vallicula multiformis Rankin, 1956 is recorded for the first time in the Arabian Sea, from the Gulf of Kutch, west coast of India in March 2013. This occurrence represents a remarkable extension of its geographic distribution that until now included only known the Pacific and Atlantic oceans.


Sign in / Sign up

Export Citation Format

Share Document