scholarly journals Analysis and mapping of field-scale soil moisture variability using high-resolution, ground-based data during the Southern Great Plains 1997 (SGP97) Hydrology Experiment

2000 ◽  
Vol 36 (4) ◽  
pp. 1023-1031 ◽  
Author(s):  
B. P. Mohanty ◽  
T. H. Skaggs ◽  
J. S. Famiglietti
1999 ◽  
Vol 35 (6) ◽  
pp. 1839-1851 ◽  
Author(s):  
J. S. Famiglietti ◽  
J. A. Devereaux ◽  
C. A. Laymon ◽  
T. Tsegaye ◽  
P. R. Houser ◽  
...  

2016 ◽  
Vol 29 (18) ◽  
pp. 6783-6804 ◽  
Author(s):  
Ben Livneh ◽  
Martin P. Hoerling

Abstract The semiarid U.S. Great Plains is prone to severe droughts having major consequences for agricultural production, livestock health, and river navigation. The recent 2012 event was accompanied by record deficits in precipitation and high temperatures during the May–August growing season. Here the physics of Great Plains drought are explored by addressing how meteorological drivers induce soil moisture deficits during the growing season. Land surface model (LSM) simulations driven by daily observed meteorological forcing from 1950 to 2013 compare favorably with satellite-derived terrestrial water anomalies and reproduce key features found in the U.S. Drought Monitor. Results from simulations by two LSMs reveal that precipitation was directly responsible for between 72% and 80% of the soil moisture depletion during 2012, and likewise has accounted for the majority of Great Plains soil moisture variability since 1950. Energy balance considerations indicate that a large fraction of the growing season temperature variability is itself driven by precipitation, pointing toward an even larger net contribution of precipitation to soil moisture variability. To assess robustness across a larger sample of drought events, daily meteorological output from 1050 years of climate simulations, representative of conditions in 1979–2013, are used to drive two LSMs. Growing season droughts, and low soil moisture conditions especially, are confirmed to result principally from rainfall deficits. Antecedent meteorological and soil moisture conditions are shown to affect growing season soil moisture, but their effects are secondary to forcing by contemporaneous rainfall deficits. This understanding of the physics of growing season droughts is used to comment on plausible Great Plains soil moisture changes in a warmer world.


2021 ◽  
Vol 597 ◽  
pp. 126102
Author(s):  
Milind Mujumdar ◽  
Mangesh M. Goswami ◽  
Ross Morrison ◽  
Jonathan G Evans ◽  
Naresh Ganeshi ◽  
...  

PLoS ONE ◽  
2019 ◽  
Vol 14 (8) ◽  
pp. e0220457 ◽  
Author(s):  
Andrew Gillreath-Brown ◽  
Lisa Nagaoka ◽  
Steve Wolverton

2015 ◽  
Vol 28 (14) ◽  
pp. 5813-5829 ◽  
Author(s):  
Joseph A. Santanello ◽  
Joshua Roundy ◽  
Paul A. Dirmeyer

Abstract The coupling of the land with the planetary boundary layer (PBL) on diurnal time scales is critical to regulating the strength of the connection between soil moisture and precipitation. To improve understanding of land–atmosphere (L–A) interactions, recent studies have focused on the development of diagnostics to quantify the strength and accuracy of the land–PBL coupling at the process level. In this paper, the authors apply a suite of local land–atmosphere coupling (LoCo) metrics to modern reanalysis (RA) products and observations during a 17-yr period over the U.S. southern Great Plains. Specifically, a range of diagnostics exploring the links between soil moisture, evaporation, PBL height, temperature, humidity, and precipitation is applied to the summertime monthly mean diurnal cycles of the North American Regional Reanalysis (NARR), Modern-Era Retrospective Analysis for Research and Applications (MERRA), and Climate Forecast System Reanalysis (CFSR). Results show that CFSR is the driest and MERRA the wettest of the three RAs in terms of overall surface–PBL coupling. When compared against observations, CFSR has a significant dry bias that impacts all components of the land–PBL system. CFSR and NARR are more similar in terms of PBL dynamics and response to dry and wet extremes, while MERRA is more constrained in terms of evaporation and PBL variability. Each RA has a unique land–PBL coupling that has implications for downstream impacts on the diurnal cycle of PBL evolution, clouds, convection, and precipitation as well as representation of extremes and drought. As a result, caution should be used when treating RAs as truth in terms of their water and energy cycle processes.


Sign in / Sign up

Export Citation Format

Share Document